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ABSTRACT Aiming at the characteristics of rolling bearing fault vibration signals and considering the merits of variational mode de—
composition in mono-eomponent separation and calculus enhanced energy operator in transient impulse detection this article introduces
a new method termed fault diagnosis of rolling bearings based on variational mode decomposition and calculus enhanced energy opera—
tor. Firstly the vibration signal is decomposed into several intrinsic mode functions by variational mode decomposition to reduce the
noise interferences and to satisfy the mono-component requirement by energy operator. Then the sensitive intrinsic mode function con—
taining the main fault information about the bearing is selected by the proposed criterion. Finally the impulses are strengthened using
calculus enhanced energy operator and the bearing fault is diagnosed by the time domain waveform and Fourier spectrum of the sensi—
tive mono-component instantaneous energy. The analysis results show that the proposed method can effectively diagnose the rolling
bearing faults.
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Fig.1 Simulated signal analysis results: (a) time domain waveform; ( b) intrinsic mode functions 1—6; ( ¢) u, instantaneous energy waveform;

d) u, instantaneous energy spectrum
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Fig.3 Analysis results of the normal signal: ( a) time domain waveform; ( b) intrinsic mode functions 1-6; ( ¢) u, instantaneous energy waveform;

d) u, instantaneous energy spectrum
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Fig.4 Analysis results of the outer race fault signal: ( a) time domain waveform; ('b) intrinsic mode functions 1—6; ( ¢) u, time domain local wave—

form; ( d) u, instantaneous energy waveform; ( e) u, instantaneous energy local waveform; ( f) u, instantaneous energy spectrum; ( g) envelope spec—
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