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Quantitative irregularity analysis for spinning detonation of premixed CH, +20,
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ABSTRACT CH, is a typical and special detonation mixture. Based on the experimental method digital image processing was
performed to study the detonation stability theory of methane. A premixed CH, + 20, mixture was ignited in a tube with an inner diam—
eter of 50. 8 mm under different initial pressures. Smoked foils were used to record the cellular structure of spinning detonation. The
average detonation velocity measured is similar with the CJ detonation velocity and it demonstrates that steady detonation happens when
the initial pressure is higher than 5 kPa. The triple point trajectory leaves a very irregular pattern in smoked foils. In order to decrease
human error the digital processing technology was utilized and improved. The CH, +20, mixture shows high degree of irregularity in
the computation of histograms and the autocorrelation function. The cellular size and gap of the unstable premixed CH, + 20, were
given. It is found that the results measured by digital image processing are accurate and by eyes are too big. The research can calculate
the cellular size and the degree of instability of the unstable premixed CH, + 20, and improves the quantitative irregular calculation
method.
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kPa rightrunning transverse wave; (b;) 10kPa lefttunning transverse wave; ('b,) 10kPa rightwunning transverse wave; (c;) 13kPa leftrun-
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wave

Fig.5 Sketch of triple point trajectory spacing
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