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Hot ductility of Fe—36Ni invar alloy
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ABSTRACT The hot ductility behaviors of Fe—36Ni alloy in the temperature range of 900—1200 “C were investigated by using a
Gleeble-3800 thermal simulator. The influence factors and mechanism of action on the hot ductility were systematically analyzed by
FactSage software scanning electron microscopy and transmission electron microscopy. The results show that inclusions in the investi—
gated alloy are mainly Al,O; + Ti;O5 + MnS and most inclusion sizes are below 0. 5 um. The hot ductility of the alloy in the tempera—
ture range of 900—1050 °C is influenced by grain boundary sliding and dynamic recrystallization. Nano-scale size ( <200 nm) inclu—
sions at grain boundaries effectively inhibit the occurrence of dynamic recrystallization as a result of the pinning effect and decrease the
grain boundary cohesion. Moreover micro—scale size ( >200 nm) inclusions at grain boundaries promote the nucleation and propaga—
tion of cracks during grain boundary sliding and decrease the hot ductility of the alloy. Increasing the temperature makes the driving
force for dynamic recrystallization larger than the pinning effect and thus increases the hot ductility significantly by the occurrence of
dynamic recrystallization when the temperature exceeds 1050 °C. In the temperature range of 1100—1200 °C  the formation of interden—
dritic cracks the coarsening of recrystallized grains and the enhanced grain boundary sliding deteriorate the hot ductility of the alloy.
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Table 1 Chemical composition of the investigated alloy %
C Si Mn P S Ti N (0) Ni Fe
0.0011 0. 154 0.391 0. 0044 0. 0034 0. 005 0. 0069 0. 0026 0. 0053 36.03
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Fig.2 Formation of inclusions in the alloy
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Fig.3 Morphologies and EDS spectra of inclusions in the alloy: (a b) micro-scale size inclusion; (¢ d) nano-scale size inclusion
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Fig.4 Size distribution of inclusions in the alloy: ( a) micro-scale size inclusions; (b) nano-scale size inclusions
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Fig.5 Characteristic curves of the investigated alloy at different deformation temperatures: ( a) reduction-in-area curves; ( b) true stress—true strain
curves
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Fig.6 Images of the fracture strained at 1000 C: ( a) macrostructure of the fracture morphology; ( b) microstructure of the fracture morphology;

(¢) longitudinal microstructure near the fracture front
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Fig.7 Nano-scale size inclusions at grain boundaries near the fracture front of the specimen strained at 1000 °C: (a) bright field images of TEM;

('b) EDS spectrum of the inclusion
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Fig.8 Grain boundary crack and micro—scale size inclusions at the crack near the

crack; (b ¢) high-magnification images showing Zones A and B in Image ( a) ; (
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Fig.9 Images of the fracture strained at 1050 °C: ( a) macrostructure of the fracture morphology; ( b) microstructure of the fracture morphology;

(¢) longitudinal microstructure near the fracture front
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