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Calculation of the influence of argon-to-hydrogen mole ratio on the discharge

characteristics of plasma in DC arc plasma jet
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ABSTRACT The effect of argon-to-hydrogen mole ratio on the discharging behavior of argon—hydrogen plasma was simulated and
studied on the assumption that argon—hydrogen plasma is in a local thermodynamic equilibrium. The kinetic theory of ideal gases and
the classical Chapman—Enskog method were employed in the study. The plasma thermodynamic and transport parameters consistent
with the actual condition of the DC arc plasma jet method were firstly found and secondary development was made on FLUENT
software platform. Equations like current continuum and Ampere’s law and source items like Lorentz force and Joule heat which
are associated with electromagnetic fields were also taken into account. The results show that when the gas pressure and operating cur—
rent are 8 kPa and 150 A respectively and the argon-to-hydrogen mole ratio changes from 3:1 to 1: 3 the maximum flow rate of plas—
ma increases from 829 to 1127 me*s™"  the maximum temperature falls from 20600 K to 16800 K and the heating capacity of the DC arc
improves while the substrate surface temperature uniformity deteriorates. Under the other conditions being unchanged when the argon-to—
hydrogen ratio is 1:2 a relatively uniform and proper substrate surface temperature can be obtained for the growth of diamond films.
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Fig.1 Temperature dependence of physical parameters for a 50%
argon—50% hydrogen mixture at atmospheric pressure: ( a) mole

fraction; (b) electrical conductivity
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Fig.3 Temperature dependence of the thermodynamic properties of
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Fig.7 Distribution of temperature on the substrate surface at differ—

ent argon—to-hydrogen mole ratios and a pressure of 8 kPa
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