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Precise mechanism of triple point passage removing soot on soot-coated surface
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ABSTRACT To understand the precise mechanism by what the soot is removed when the triple point passed over the smoked inner
wall foil or smoked end-en glass and promote the research on spinning detonation structure smoked end-on glasses and inner wall
smoked foils were established to record the trajectories of triple-shock Mach intersections of spinning detonation. Detonation records of
unstable a little stable and very stable premixed mixtures were obtained in wall foils and end-on glasses. Smoked end-on glass of 2H,
+ 0, +3Ar gave clear records. Sing-head spinning detonation records of 2H, + O, + 3Ar indicates that the internal structure of the
spinning detonation is not stable while the inner wall results are similar. The cause why soot can be adsorbed on foils and glasses is one
factor. Another factor is that reaction characteristics performance of different mixtures should be considered according to above experi—
mental results. The soot can be removed when bond energy is bigger than adsorption energy between the soot and the foil or glass sur—
face. What’ s more the carbon molecules particles in detonation front reaction may lead to carbon accumulation and affect the records.

In another hand the strength of reflected shock wave may affect the clarity of the records. Finally the precise mechanism is affected
by characteristics of mixtures. Using appropriate surface roughness and soot particle size according to mixtures characteristics can give
satisfying detonation structure records.
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Fig.1 Detonation tube structure diagram
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