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Stress distribution law and adherent dross stability of the copper cooling stave with

variable slag coating thickness
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ABSTRACT A thermal-mechanical coupling model of a copper cooling stave with variable slag coating was founded based on thermal
elastic mechanics and the influence of the gas temperature the cooling system the materials of insert bricks and the properties of
the slag on the stave life and the stability of the adherent dross was analyzed from the view point of the stress distribution of the stave
body and the slag—brick interface. The results show that the increase of the gas temperature linearly improves the stress of stave body
and reduces the stability of the adherent dross meanwhile. The stress of the stave body and the stability of the adherent dross both de—
crease at first and then increase when the slag coating thickness increases and the slag coating thickness should be controlled between
30 to 60 mm. The increase of water velocity incurs tiny growth of the stress of the stave body while the stability of the adherent dross
is enhanced. The stress of the stave body is weakly reduced with the increase of water temperature but the stability of the adherent
dross decreases heavily meanwhile. The increase of the heat conductivity of insert bricks and the decrease of the heat expansion coeffi—
cient of the slag significantly reduce the stress of the stave body and enhance the stability of the adherent dross.
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Table 1 Elasticity mechanics parameters of materials
/°C /(kgem %) /GPa /(10 7% meC ")
17 110 17.6
100 8390 108 18.0 0.33
300 95 18.5
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Table 2 Parameters under the different gas temperatures
/ / / / / / /
C mm (mes™h) C (Wem~'eC") (10 ®meC ") (10 % meC ")
1200 ~ 1400 5~85 0.5~2.5 25 ~45 5~15 2.7~ 10.7 2.7~ 10.7
1300 — 2.0 35 10 4.7 4.7
2
2.1 N
1
2(a)
2( a)
1 . (a) 1200°C;(b) 1250C; (c) 1300°C; (d) 1350°C;(e) 1400 C

Fig.1 Stress distribution of the stave body at different gas temperatures: (a) 1200 °C; (b) 1250 °C; (¢) 1300 °C; (d) 1350°C; (e) 1400 C
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(Pa). (a) 5mm; (b) 15mm; (c¢) 25mm; (d) 35mm; (e) 45mm; (f) 55mm; (g) 65 mm;

(h) 75 mm; (i) 85mm
Fig.3 Stress distribution of stave body under different slag coating thicknesses( Pa) : (a) 5mm; (b) 15mm; (c¢) 25mm; (d) 35mm; (e) 45
mm; (f) 55mm; (g) 65mm; (h) 75mm; (i) 85 mm
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Fig.4 Stress variation of the stave body (a) and the slag—brick interface ( b) under different slag coating thicknesses
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Fig.7 Influence of water temperature on the stress of the stave body
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Fig.10 Influence of the thermal expansion coefficient of insert bricks on the stress of the stave body (a) and the slag—brick interface ( b)
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Fig. 11 Influence of the thermal expansion coefficient of slag coating on the stress of the stave body ( a) and the slag—brick interface ( b)
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