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Optimization for swarm intelligence based on layer-by-ayer evolution
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ABSTRACT A layer-byayer evolution strategy was proposed to deal with the premature convergence of swarm intelligence as a col-
laborator with other existing researches based on pre-experiments and simple proofs. For promoting the precision of solution and eviting
the premature convergence the self-adaption system was constructed on the basis of the primal algorithm operations such as compres—
sion selection and re-initialization using the technology of layer-by-ayer and the social information was used including the com-—
pressed research space and the optimal solution. The improvements of precision of solution and the vitality of terminal individuals can
be found in results of simulation experiments with benchmark functions.

KEY WORDS swarm intelligence; search space; layer-bydayer; premature convergence

(GA) . ( PSO) ( DE)
k
layer-by-ayer( LBL)
! ( immersive) .
( spin) . ( spray) . ( electromagnetic)

: 2016—05-09



- 463 -

( fluidic)
2
3
3
4

1

1.1

(GA) .
( DE)

1

( PSO)

4-5

o=+ e (p,—a) +ern(g-x))

(1)

xt+l :xt +1}r+1'
v ® c,~C, x
P8
t rroe(01)
X
6—9 10—11 12-13
14-15
(
)
(2) (3) 16—17
18
(2) ~(3)
D

1.2

1

Fig.1 Layer-bydayer assembly technologies '



- 464 -

Fig.2

weight

2

1

( Ackley) . (a)

; (b)

39 3
(1) (1)
19 20
B ( w, ~w4) y
(2) ( 20 200)
( D =30).
50
(3) Ackley :
(4)
1 (2) v 2
’ (
2 3
16
.
2;( [x gll <Blb b, 1)
(1) = g . (4)
g b b,
B=1x10" 16y b, |
D (0) D ()

[lustrating the swarms diversity with strategy 1 ( Ackley) : ('a) constant-weight; (b) random-weight; (¢) linear-weight; ( d) nonlinear—



. 465 -

3 2 ( Ackley) . (a) : (b) : (o) L ()
Fig.3 [llustrating the swarms diversity with strategy 2 ( Ackley) : (a) constant-weight; (b) random-weight; ( ¢) linear-weight; ( d) nonlinear—
weight
2 1
4
’ o2 (6) G S
3 .
1 b, b, T = b, b, /10" (5)
1
(4) 2 &= Gl =5~ (6)
d
Y o
d=vy
2
1
2
| 2 ocp) 1 0( P?)
2
1
3
o2 3.1
5 2
2.2 i ( |
n
v . A B
k . Ackley (f,) 0



- 466 -

39 3

4 . (a)

» (b) v (o) » (d)

Fig.4 Relations between the precision of the solution and the scale of the search space: ( a) constant-weight; ( b) random-weight; ( ¢) linear—

weight; (d) nonlinear-weight

ol 1
nn mn ]
=0: : 0 7
Puo =1 g (7)
ol 10
DI’LTL mnD
t+1 o( 5
)
P~q

e L) ()]

n
_q:L.(L-l)’_Li

O oOQmap

m-1\{n-1\"
e s L) (7))
(8)
m =n—o (8)
P—-q=

5
Fig.5 Schematic diagram of the hitting probability based on the di-

vided search space



* 467 -

3.2
13
’ (3)
(1) S
% pi-
27 D
e = e, .eh ew 2]
o (11)
i<em n<D m#n
[i/e, ]
BU’ =b, Yy Yoimn =1y, :Tl
d (i +1
y omod(ie) £l (1)
€,
(2) »,
S
3.3
(3)
( )
W ) Sirts
(5)
(1) a=0.7
best-first
R* =max (1 Ra). (12) SPSO °
R
(2) B=0.5
SPSO °

abs()
abs(g-b) B L
abs(g-b,) "B L

b? =g — max

b, =g + max

u

g
1
6
2
11
22 2 ] o
o =10"
/s



468 -

39

1 LBL-PSO

Table 1 LBL—PSO approach
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2

Table 2 Benchmark functions used in this paper

fi: Sphere -100 100 ? g=0" Ng) =0
£ Elliptic ~100 100 ” g=0" fg) =0
/¢ Rastrigin -557 g=0" flg) =0
fui Ackley 32327 g=0" Ag) =0
/5 Schwefel -100 100 ? g=0" flg) =0
fs: Rosenbrock -100 100 ” g=1" Mg) =0
fo0 Sfi_Elliptic -90 110 ? g =o+g=10" Aeg") =0
fi: Sft_Rastrigin 515 P g =o+g=10" fAeg") =0
fot Sft_Ackley 204 P g =o+g=10" Mg ) =0
fro: Sft_Schwefel -90 110 ” ¢ =o+g=10" g ) =0
fiy: Sft_Rosenbrock -90 110 ? ¢ =otg=11" Mg ) =0
Y 7(e) \7(g) \71(h) ()
v L
() \7(i)  7(k)
7 D =10
D =30
1
10 30 S1 S2
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3
8
3
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Table 3  Analysis of obtaining solutions under constant weight ( D—10)

1 2 1 2
h 1.1282 6.0308 x 10 ~° 2.7901 x 10~ 1. 0086 1.3991 x 10 ~° 8.3702 x 10~
f 0. 78058 1.4674 x10~° 6.048 x 10~ 0. 76403 4.0682 x 1071 1.1099 x 10 =™
£ 1.3381 7.8044 x10~* 7.1379 x 10 ~* 0. 42132 9.999¢ 05 7.138 x10 73
fa 0. 57477 0.31842 0. 12189 0.78178 0. 095221 0. 023389
fs 2. 0476 2.6102 x10 73 4.5881 x10 73 1. 9656 0. 0012553 0. 00085644
fs 161. 0897 8.0314 3.5044 100. 6025 5.0168 4. 8764
fr 0. 85682 7.3719 x 10 -6 2.4297 x 1077 0. 81468 1.3112x10° 6.0403 x 10 3
fs 1. 3647 0. 13995 0. 4639 0. 47642 0. 020272 0.079874
fo 0. 60317 0. 62451 0.52572 0. 90764 0.37308 0. 25052
Sio 2.2414 0. 021445 0.010979 2.2676 0. 010439 0. 0067982
Su 110. 1334 4.9742 14. 8816 101. 1201 5. 6683 8. 4738

1 2 1 2
fi 0. 02147 8.8226 x10 "¢ 1.2554 x10°" 7.2891 5.0411 x10 78 2.0414 x10°"
b 0. 037832 1.1148 x10°1 1.3055 x10 "7 3.8588 7.978 x 10 ~° 5.9928 x 101
/s 0. 00012295 5.6843 x 10~ 0 10. 0061 0. 0076218 0. 0071379
fi 0.072415 5.0097 x10~° 1.4619 x10~° 2.6143 2.0137 1.1779
fs 0.011101 2.5613 x10 7% 2.5145 x10 72 11.255 0. 018989 0. 003329
fo 8. 4583 1.5749 x10 ¢ 4.8059 x10~° 1437. 9891 75. 8412 9.0918
fr 0. 027766 2.0124 x10°" 3.9477 x10 1 5.0973 6.5277 x10~° 2.3163 x10 ¢
fs 0. 00098887 9.0381 x10'° 2.9715 x10 " 10. 0468 0. 995 0. 9995
fo 0.018175 3.9303 x10~° 2.2614 x10 ~° 2.417 2.0133 1. 6464
Sio 0. 052696 1.9219 x10 73 1.1726 x10 73 11. 8583 0. 12581 0.053114
S 3.7844 1.05 x10°° 9.2184 x10°° 575. 4213 39. 1231 81. 8209
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4 (30 )

Table 4 Analysis of obtaining solutions under constant weight ( D—30)

1 2 1 2
h 3.205 0.0019716 0. 0013426 6.9363 0. 00076592 0. 00054158
5 3.8133 0. 0042851 0. 0027921 7.6343 0. 0011544 0. 0008001
/s 5.7623 0. 0069749 0. 0015407 5.5119 0.0013778 0. 00069827
Ja 0. 47945 0. 03693 0.091813 1.5833 0.013786 0. 025675
fs 22. 9864 2.9231 2.9959 27.2878 4.482 4.6818
Js 858. 1021 14. 6295 14. 469 1048. 2949 35.9452 35. 6523
S 5.1435 0. 057156 0. 047947 7. 6947 0.07127 0. 064933
Js 4.968 0. 46587 0.80151 5.4284 0.47416 0. 55524
fo 0. 53564 0.37398 0.36118 1. 6354 0. 30023 0. 24424
Sio 28.4189 4.5261 3.5199 30. 1211 8.1018 7. 8266
Su 930. 9887 32,544 30. 1093 1105. 7393 64. 056 62. 5251

1 2 1 2
S 1. 6355 1.2206 x 107 6.6598 x10~° 21.8319 0. 015959 0. 0090582
2 2.8485 1.9937 x10 =% 2.179 x10 78 23.295 0. 035233 0. 025575
i 0. 99559 4.7299 x 107 4.1461 x10 % 40. 9301 0. 064105 0. 0081728
Ja 0. 65022 2.4271 x10 73 0. 00018403 2.8494 0. 2004 0. 80453
fs 4.3958 0. 37762 0. 059936 131. 4779 16. 5186 14. 507
Js 124. 9587 22.1206 25. 8733 5366. 0678 109. 198 125. 2924
S 2.1587 0. 0017265 0. 0016865 27.7803 0.32385 0. 20228
Js 1. 0645 0.01745 0. 03576 36.2923 2.5627 6. 6635
fo 0. 68259 0. 033952 0.01943 2.785 2.1191 1.7919
Sio 3.2344 0. 98727 0. 04448 141. 5428 25.2545 16. 3272
Su 178. 299 28. 5085 18. 5904 5020. 2071 173. 2692 167. 2634
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