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The first principles of the crystal structure and active sites of calcite
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ABSTRACT The calcite structure and the adsorption of water molecules as well as water molecule clusters on it were investigated

using the CASTEP module Materials Studio 6. 1 based on the first principles of the density functional theory ( DFT) . Results indicate

that the O site of calcite shows the highest activity in the reaction process followed by the C and Ca sites; {1014} is the most stable

cleavage plane where the adsorption can occur between the water molecule and the Ca and O sites and the O site shows a more stron—
ger adsorption effect with the hydrogen bond formed through the H( H,0) —O( CaCO,) and H( H,0) —O( H,0) bonds. There are

both hydrogen bonds between the water molecules as well as the water molecules and calcite surface whose adsorption effects are

mainly found to be the O site followed by the relative weaker Ca site.
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Fig.1 Crystalline structure of a unit cell calcite: ( a) rhombohedral
N representation; ( b) hexagonal representation (Ca O and C are re—
presented by green red and dark gray colors respectively)
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Ca 3s’3p°4s’ C 2’ 2p° H 25! 3 {1014}
Ca’* €O, .
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{1014} {0118} {2134} {1014}
1.8 nm 1~6 18 nm.
1
Table 1 Charge and surface energy of slabs with different layers
{0118} {2134} {1014}
/(J*m™?) /(Jem™?) /(Jom™?)
1 0 0.750 -0.0le 0.579 0.02e 0. 482
2 0.04e 0.424 0.03e 0. 409 0 0. 409
3 0.04e 0. 663 -0.0le 0. 562 -0.02e 0.423
4 0.04e 0. 445 0.02e 0. 604 0 0.419
5 0 0. 645 -0.0le 0. 690 0 0.418
6 -0.02e 0. 568 0 0. 657 0 0.418
0.4200 {1014} . Ca C
0.4195+ » ' { }
5‘; 0.4190 - Ca
31%_ 0.4185 C C
E 0.4180 v Ca
v
041751 (Ey)
04170 oS T T3 18 2T 34 57 39 35 38 (1014} ’ {1014}
U RIS m -38eV Ca 3p
. -20eV Ca 3p-
2 tor) ) C2p02s  C2s —6eV  -3eV
if:lm El};j:;i;:i:l:famﬁ energy of the calcite { 1014} surface with 02p
0 2p 5eV C 2p
{1014} 5 Ca 3d {1014}
1. 8 nm 2 0 C Ca
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2 {1014}

Table 2 Atomic relaxation in the calcite { 1014} surface

Az, /nm Ad, . /nm
n Az, /nm
Ca C Ca C
1 0.000351 -0.000082 0.000433 -0.000446 -0.000131
2 -0. 000094 0.000049 0.000143 0. 000077  0.000073
3 -0.000017 -0.000024 0. 000007 0. 000096  0.000082
4 0.000079 -0.000106 0.000185 —0.000439 -0.000282
5 -0. 000360 0.000177  0.000537
‘n Az, z (Az,
Az, ) Az; Ca _
C Ad, . n n+l 3 {1014}
(Ad, ., Fig.3 Density of states of the calcite { 1014} surface
Ad, ) -
0.2373 nm Ca—O
{1014} 0.236 nm c—O0
Mulliken 3 0 0. 1301 nm C—O0 0. 128 nm
02p C Ca 0
C2s.C2p Ca3d . Ca—0
3 {1014} Mulliken
Table 3 Charge and Mulliken population of atoms on the calcite{ 1014} surface after relaxation
/nm
s p d
C 0. 86 2.39 0. 00 3.25 0.76e C—0 0.83 0. 1301
(0] 1. 80 4.92 0. 00 6.72 -0.73e Ca—0 0.11 0.2373
Ca 2.12 6. 00 0. 47 8.59 1.42e
2.2 {1014} Ca ~0 C
0 2p 4
C2p.Ca3d Ca 105. 12°
{1014} 0. 0979 nm Ca
2x1x1 -0.75eV; C
4 ( Ca: ; O ;G - )

Fig.4 Crystal structure of the H, O molecule in the supercell surface adsorption ( Ca: green O:red C:dark gray H: little gray)
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Fig.5 Density of states of H,O adsorbed at different sites of the calcite {1014} surface
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Table 4 Atomic charge and valence electrons number of O and Ca sites

of calcite after adsorped H, O

C 0.86 2.39 0 3.25 0. 76e

O( CaCo,) 1.83  4.89 0 6.72 -0.72e

ca Ca 212 6.00  0.46 8.58  1.42¢
HI 0.49 0 0 0.49 0.5le

H2 0.47 0 0 047  0.53

O(H,0) 1.87 512 0  6.99 —0.9%

C 0.8 239 0  3.25  0.76e

0(CaCO;) 1.81 4.8 0 670 —-0.70e

Ca 212 6.00  0.46 8.58  1.42e

0 HI 0.49 0 0 0.49 0.5le
H2 0.54 0 0 0.54  0.46¢

O( H,0) 1.86 5.14 0 7.00 -1.00e
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5 0O Ca Mulliken
Table 5 Mulliken population of O and Ca sites of calcite after adsorped
H,0
/nm
C—0( €aCO0,) 0.90 0.1278
Ca—O0( CaCO,) 0. 14 0.2301
Ca H1—O( H,0) 0.53 0.0979
H2—0( H,0) 0.52 0. 0978
Ca—O0( H,0) 0.07 0. 2429
C—O0( CaCO,) 0. 90 0. 1279
Ca—O0( CaCO;) 0.12 0.2388
Ca—O0( H,0) 0. 08 0. 2407
Y HI—O0( H,0) 0.53 0. 0977
H2—0( H,0) 0.49 0.1014 7 {1014} -(a)
H2—0( CaCO) 0.12 0. 1688 {1014} +(b)
C—0( H,0) 0.83 0. 1301 {1014}
Fig.7 Density of states of H,O clusters adsorbed on calcite { 1014}
2.3 { 10i4} supercell: ( a) the total density of states of H,O clusters adsorbed on
{1014} 0 calcite {1014} supercell; (b) the partial density of states of H,0
0] clusters adsorbed on calcite { 1014} supercell
Ca
. 0
{1014} Ca O H
6 7 {1014} CanC O
7( a) (b) 0—Ca ; 0O H
{1014} 0—0
-10eV ; O0—H
02p 0 2p O—H
-19eV Ca 3p
-18eV 0 2s . . ( H,0) —0O( CaCo0,) (H,0) —
Ca( CaCO,) ( H,0) —O ( CaCO,)
( H,0) —Ca( CaCO,)
{1014} 0
6 {1014} Mulliken
Table 6 Mulliken population of H,O clusters adsorbed on calcite { 1014}
supercell
/nm
6 {1014} O( H,0) —Ca( CaCO;) 0.075 0.2472
Fig.6 Molecular structure of H,O clusters adsorbed on the calcite 0( H,0) —0( CaCO,) 0.050 0.2823
{1014} supercell 0( H,0) —0( H,0) 0.084 0.2749
{10i4) H( H,0) —O( H,0) 0. 304 0. 1581
6 H( H,0) —0( CaCO;) 0. 035 0.2391
Wu 23 COZ H( H,0) —Ca( CaCO;) 0. 035 0.2809
KCl ( 100) H( H,0) —C( CaCO5) 0. 042 0.2533
6 H( H,0) —H( H,0) 0. 055 0.2124

cluster
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