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摘 要 为了解决某钢厂 IF钢冶炼 ＲH精炼过程铝耗偏高问题，通过数理统计和 BP 神经网络相结合的方法建立了铝耗预
测模型，并与多元线性回归模型进行比较，该模型具有更高准确度． 该模型分析了不同冶炼工艺参数对铝耗的具体影响，并
对相应工艺参数进行了优化． 结果表明: 脱碳结束氧活度或 ＲH 进站氧活度降低 0. 005%左右，每吨钢铝耗可降低 0. 07 ～
0. 08 kg，铝脱氧有效利用系数为 70. 31% ～ 80. 35% ; ＲH进站钢液温度增加 35 ～ 40 ℃，铝耗降低 1 kg左右，铝热反应升温利用
系数在 97. 4%左右;吹氧量小于 100 m3 和大于 100 m3 时，氧气与铝反应的比例分别为 37. 3%和 74. 6%左右，吹氧量每增加
50 m3，铝耗分别增加 0. 1 kg和 0. 2 kg左右． 工艺参数优化后平均铝耗由 1. 359 kg降低到 1. 113 kg，降幅达 18. 1% ．
关键词 IF钢; 低碳钢; 铝耗; 神经网络; 预测模型
分类号 TF769. 4

收稿日期: 2016--07--25
基金项目: 国家自然科学基金资助项目( 51404022) ; 钢铁冶金新技术国家重点实验室自主课题( 41616003)

Prediction model of aluminum consumption with BP neural networks in IF steel
production

ZHANG Si-yuan1) ，BAO Yan-ping1) ，ZHANG Chao-jie1) ，LIN Lu2)

1) State Key Laboratory of Advanced Metallurgy，University of Science and Technology Beijing，Beijing 100083，China
2) Metallurgical Technology Institute，Central Iron and Steel Ｒesearch Institute，Beijing 100081，China

Corresponding author，E-mail: baoyp@ ustb． edu． cn

ABSTＲACT To solve the high aluminum consumption problem in interstitial-free steel production in a steel plant，an aluminum
consumption prediction model was established by mathematical statistics and BP neural networks． Compared with the multiple linear
regression model，this model's result is more accurate． The influence of different smelting processes on aluminum consumption was
analyzed，and the process parameters were optimized． The results show that the amount of aluminum consumption per ton of steel
decreases 0. 07 to 0. 08 kg when the oxygen activity before ＲH or after decarbonization reduces by 0. 005% ． The effective utilization
coefficient of aluminum-deoxidizing is from 70. 31% to 80. 35% ; the aluminum consumption decreases about 0. 1 kg when the tempera-
ture of steel before ＲH increases by 35 to 40 ℃ ． The heating utilization coefficient of aluminum thermal reaction is about 97. 4% ．
When the blowing oxygen quantity is less than 100 m3 and greater than 100 m3，the ratio of oxygen reacting with aluminum is about
37. 3% or about 74. 6% respectively，and the aluminum consumption increases by 0. 1 kg or 0. 2 kg，respectively，with the blowing ox-
ygen quantity increasing by 50 m3 ． After the process parameter optimization，the aluminum consumption decreases from 1. 359 to
1. 113 kg，which results in a decrease of 18. 1% ．
KEY WOＲDS IF steel; low carbon steel; aluminum consumption; neural networks; prediction models

IF钢由于良好的深冲性能，被广泛应用在汽车和
家电行业中，对洁净度要求十分严格，因此需要控制钢

中夹杂物的数量、大小、形态和分布［1--2］． IF 钢属于铝
脱氧镇静钢，生产过程中要加入大量的铝合金进行脱
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氧，但过量的 Al2O3脱氧产物会影响钢液洁净度． 铝耗
的降低一方面能够节约生产成本，更重要的是能够减

少 Al2O3的产生，降低大尺寸簇状 Al2O3夹杂形成的概

率，提高铸坯洁净度［3
--4］． 因此通过降低铝耗，达到降

低钢厂生产成本和提高钢液洁净度的目的显得尤为

重要．
目前国内外学者对铝脱氧镇静钢的研究大部分集

中在如何降低已经生成的 Al2O3夹杂对钢材质量的影

响或仅对 Al2O3夹杂的危害进行描述
［5--8］，很少有学者

对冶炼工艺对铝耗的具体影响进行系统的分析． 本文
通过 BP神经网络构建铝耗预测模型，以此来分析不
同 ＲH冶炼工艺参数对铝耗的具体影响，从而根据该
结果对实际生产予以指导，最终通过降低铝耗达到降

低生产成本和提高钢液洁净度的目的．

1 BP神经网络

BP神经网络是一种多层前馈神经网络，由信息的
正向传播和误差的反向调节两个过程组成［9］，如图 1
所示，其中 xn和 ym为训练样本输入输出的原始数据，

Wab为输入层神经元和隐含层神经元之间的连接权值，

Wbc为隐含层神经元和输出层神经元直接的连接权值．

图 1 三层 BP神经网络结构图
Fig． 1 Structure diagram of a three-layer BP neural network

BP神经网络包含 3 层［10］:输入层、隐含层和输出
层，隐含层可以为一层也可以为多层 ( 本模型隐含层

为 1 层) ，每一层神经元互相连接，通过向后反馈的学
习机制，不断修正神经网络中神经元权值，直至输出正

确结果．

BP神经网络可以进行自主训练，在训练过程中通
过不断的计算修正，实现输入变量和输出结果之间准

确的映射作用，数学理论证明三层的神经网络可以以

任意精度逼近任何非线性连续函数［11
--12］． IF 钢冶炼

过程中，影响铝耗的工艺参数较为复杂，BP 神经网络
恰好可以准确地探求出不同工艺因素对铝耗的影响，

以此来指导生产．

2 模型建立及应用

2. 1 输入变量确定
正确的输入变量是保证模型中铝耗与冶炼工艺参

数准确映射关系的前提，可能影响铝耗的冶炼工艺参

数为进站到开始处理时间、抽真空到深真空时间、最小
真空度、ＲH进站钢液温度、吹氧量、ＲH进站氧活度和
脱碳结束氧活度． 本文所用数据以某钢厂 2016 年 3—
5 月份的冶炼工艺数据为基础，筛选掉异常炉次，对
845 炉有效冶炼工艺数据进行处理．
考虑到各冶炼工艺参数之间可能存在一定的关联

性，首先通过主成分分析，对可能影响铝耗的工艺参数

进行降维处理，计算结果如表 1 所示．

表 1 方差及主成分贡献率
Table 1 Eigenvalue and principle component contribution rate

成分
特征向量

特征值 方差贡献率 /% 方差累计贡献率 /%

1 2. 018 28. 823 28. 823

2 1. 230 17. 567 46. 390

3 1. 037 14. 818 61. 208

4 0. 913 14. 183 75. 391

5 0. 778 11. 116 86. 507

6 0. 677 9. 668 96. 175

7 0. 268 3. 825 100. 000

从表 1 发现，特征值大于 1 的主成分有 3 项，累计
方差贡献率为 61. 208%，小于主成分方差占总方差
75% ～ 85%的要求［13］，因此不能够通过主成分分析进
行降维处理． 通过 SPSS 软件对冶炼工艺参数与铝耗
的关系进行相关性分析，明确铝耗与主要工艺参数的

显著性水平，如表 2 所示．

表 2 不同冶炼工艺与铝耗的显著性结果
Table 2 Significant results between different smelting processes and aluminum consumption

工艺参数 进站到开始处理时间 抽真空到深真空时间 最小真空度 ＲH进站钢液温度 吹氧量 ＲH进站氧活度 脱碳结束氧活度

显著性 0. 061 0. 135 0. 232 0 0 0 0

注:在 0. 01 水平( 双侧) 上显著相关．

从表 2 可知，ＲH进站钢液温度、吹氧量、ＲH 进站
氧活度以及脱碳结束氧活度与铝耗的显著性结果均小

于显著性水平 0. 01，应拒绝 H0假设( 与铝耗之间的相

关性不显著) ，认为与铝耗之间的相关性显著．
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作 845 炉中 ＲH 进站钢液温度、吹氧量与铝耗关
系的散点图，因吹氧量对钢液氧活度产生较大影响，

ＲH进站氧活度和脱碳结束氧活度与铝耗关系的散点
图为未吹氧的 338 炉次统计结果，如图 2 所示．

图 2 不同冶炼工艺与铝耗关系． ( a) 铝耗与 ＲH进站钢液温度的关系; ( b) 铝耗与吹氧量的关系; ( c) 铝耗与 ＲH进站氧活度的关系; ( d) 铝
耗与脱碳结束氧活度的关系

Fig． 2 Ｒelationship between different smelting processes and aluminum consumption: ( a) relationship between aluminum consumption and steel tem-
perature before ＲH; ( b) relationship between aluminum consumption and blowing oxygen quantity; ( c) relationship between aluminum consumption and
oxygen activities before ＲH; ( d) relationship between aluminum consumption and oxygen activity after decarbonization

由图 2 可知，ＲH进站钢液温度、吹氧量、ＲH 进站
氧活度和脱碳结束氧活度与铝耗均有明显的线性关

系，铝耗随 ＲH 进站钢液温度的升高而降低，随吹氧
量、ＲH进站氧活度和脱碳结束氧活度的升高而升高．
计算各因素与铝耗的相关系数 r如下式［14］:

r =
n∑xy －∑x∑

[
y

n∑x2 (－ ∑ )x ] [2

n∑y2 (－ ∑ )y ]槡
2

．

( 1)
式中，x为 ＲH进站钢液温度、吹氧量、ＲH进站氧活度
或脱碳结束氧活度中的影响因素之一，y 为铝耗，n 为
样本量． 结果如表 3 所示．
由表 3 可知，吹氧量与铝耗的相关系数最大，对铝

耗影响最强;脱碳结束氧活度与铝耗的相关系数最小，

对铝耗影响最弱; ＲH进站钢液温度和 ＲH进站氧活度

表 3 不同冶炼工艺与铝耗的相关系数
Table 3 Correlation coefficients between different smelting processes
and aluminum consumption

冶炼工艺

参数

ＲH进站
钢液温度

吹氧量
ＲH进站
氧活度

脱碳结束

氧活度

相关系数 － 0. 527 0. 685 0. 533 0. 395

与铝耗的相关系数居中，对铝耗影响处于居中位置，因

此可以确定以上四个冶炼工艺参数作为模型的输入

变量．

2. 2 模型建立过程

以 2016 年 3—5 月份的 845 炉 ＲH冶炼工艺参数
为依据，进行模型的训练和仿真，随机选择其中 90%
的数据用于训练，剩余 10%的数据用于结果的仿真．
训练参数如表 4 所示．

表 4 BP神经网络铝耗预测模型训练参数
Table 4 Training parameters of the aluminum consumption prediction model with BP neural networks

训练参数 隐层个数 隐层神经元个数 学习速率 动量因子 训练精度 输入层传递函数 隐层传递函数 输出层传递函数 训练函数

设定值 1 8 0. 001 0. 9 0. 0001 tansig tansig purelin trainlm
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表 4 训练参数选取为多次训练以后选取的最优参
数，其他未注明参数均采用默认值． 应用 matlab GUI

将 BP神经网络铝耗预测模型编制成软件进行应用，
模型界面和控制过程如图 3 和图 4 所示．

图 3 BP神经网络铝耗预测模型界面
Fig． 3 Interface of the aluminum consumption prediction model with BP neural networks

图 4 BP神经网络铝耗预测模型控制过程
Fig． 4 Control process of the aluminum consumption prediction mod-
el with BP neural networks

2. 3 模型结果仿真
模型训练完成以后，将 845 炉次的 10%用于结果

的仿真． 仿真结果如表 5 所示．

由表 5 可知，BP神经网络铝耗预测模型仿真结果
的标准差为 0. 285，平均误差为 5. 34%，平均正确率为
94. 66% ． 相对误差在 10% 以内的命中率达到了
91. 8%，绝对误差范围在［－ 0. 1，0. 1］范围内的命中率
达到了 85. 9%，命中率较高，具有很高的应用价值．
2. 4 BP神经网络模型与多元线性回归模型对比
由图 2 可知，ＲH进站钢液温度、吹氧量、ＲH进站

氧活度和脱碳结束氧活度与铝耗呈线性关系，对以上

因素和铝耗的关系进行多元线性回归建模，回归系数

如表 6 所示．
多元线性回归模型为:

y = － 0. 002 × t + 0. 004 × LO + 0. 002 × a［O］+
0. 001 × a'［O］+ 2. 761． ( 2)

式中: t为 ＲH进站钢液温度; LO为吹氧量; a［O］为 ＲH
进站氧活度，a'［O］为脱碳结束氧活度．
由式( 2 ) 可知，吹氧量系数最大，对铝耗影响最

大;脱碳结束氧活度系数最小，对铝耗影响最小; ＲH
进站钢液温度和 ＲH 进站氧活度系数绝对值相等，对
铝耗影响几乎相同，同 2. 1 节所反映的影响规律几乎
相同，验证了各工艺参数对铝耗影响的重要性．
将 BP神经网络铝耗预测模型用于结果仿真的 85

炉工艺参数代入多元线性回归模型中，对两种模型的

预测输出与期望输出进行对比，如图 5 所示．
由图 5 可知，两种模型的预测输出和期望输出均

有较好的吻合度，变化趋势几乎相同． 但大部分炉次
中，BP神经网络模型的预测输出与期望输出更接近，
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表 5 BP神经网络铝耗预测模型仿真结果
Table 5 Simulation results of the aluminum consumption prediction model with BP neural networks

炉次 期望输出 /kg 预测输出 /kg 相对误差 /% 炉次 期望输出 / kg 预测输出 / kg 相对误差 /%

1 1. 41 1. 31 7. 00 44 1. 10 1. 08 1. 39

2 1. 59 1. 67 4. 56 45 0. 96 0. 89 6. 91

3 1. 21 1. 17 3. 08 46 1. 43 1. 49 3. 90

4 0. 95 0. 97 2. 11 47 1. 04 1. 06 1. 99

5 1. 51 1. 44 4. 20 48 1. 28 1. 17 8. 56

6 1. 48 1. 42 3. 95 49 1. 31 1. 10 16. 04

7 1. 22 1. 39 13. 53 50 1. 06 0. 99 7. 23

8 1. 40 1. 37 2. 43 51 1. 72 1. 60 6. 73

9 1. 40 1. 28 8. 38 52 1. 15 1. 04 9. 50

10 1. 10 1. 06 4. 03 53 1. 35 1. 27 5. 94

11 1. 65 1. 58 3. 85 54 1. 06 1. 01 4. 49

12 1. 33 1. 24 7. 02 55 0. 89 1. 07 19. 35

13 1. 46 1. 43 2. 09 56 1. 63 1. 71 5. 18

14 1. 42 1. 35 5. 36 57 1. 31 1. 25 4. 77

15 0. 92 0. 92 0. 07 58 1. 54 1. 39 9. 47

16 1. 17 1. 23 5. 03 59 1. 73 1. 64 5. 63

17 1. 20 1. 12 6. 18 60 0. 89 0. 91 2. 73

18 1. 63 1. 59 2. 46 61 1. 38 1. 41 2. 15

19 1. 55 1. 48 4. 29 62 0. 91 0. 96 5. 08

20 1. 42 1. 50 5. 39 63 0. 91 0. 96 4. 88

21 1. 45 1. 38 4. 72 64 0. 96 0. 98 2. 48

22 1. 92 1. 90 1. 07 65 1. 98 1. 92 3. 01

23 1. 56 1. 60 2. 83 66 1. 05 1. 03 1. 89

24 1. 69 1. 52 10. 13 67 1. 73 1. 59 8. 10

25 1. 28 1. 34 4. 48 68 1. 30 1. 20 7. 30

26 0. 93 0. 90 3. 09 69 1. 19 1. 23 3. 00

27 0. 70 0. 80 12. 88 70 1. 09 1. 00 8. 47

28 1. 23 1. 26 2. 33 71 1. 16 1. 04 10. 52

29 1. 03 0. 97 5. 76 72 1. 52 1. 47 3. 51

30 1. 52 1. 44 5. 14 73 1. 30 1. 22 6. 38

31 1. 07 1. 09 1. 89 74 1. 32 1. 29 2. 90

32 1. 31 1. 21 7. 20 75 0. 83 0. 86 3. 36

33 1. 27 1. 22 4. 04 76 1. 26 1. 19 5. 69

34 2. 35 2. 41 2. 79 77 1. 38 1. 33 3. 54

35 1. 10 1. 17 6. 29 78 1. 33 1. 41 6. 08

36 1. 08 0. 99 8. 25 79 1. 54 1. 51 1. 57

37 0. 93 0. 93 0. 64 80 1. 15 1. 23 7. 41

38 1. 83 1. 89 3. 24 81 1. 49 1. 32 11. 01

39 1. 49 1. 41 5. 15 82 1. 15 1. 22 6. 02

40 1. 57 1. 49 4. 92 83 0. 97 0. 95 2. 57

41 1. 11 1. 09 2. 23 84 1. 20 1. 10 8. 03

42 1. 66 1. 72 3. 87 85 1. 09 1. 04 4. 07

43 0. 84 0. 90 7. 17
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表 6 多元线性回归系数
Table 6 Coefficients of multiple linear regression

多元线性

回归参数
常量

ＲH进站
钢液温度

吹氧量
ＲH进站
氧活度

脱碳结束

氧活度

回归系数 2. 761 － 0. 002 0. 004 0. 002 0. 001

图 5 BP神经网络和多元线性回归预测输出和期望输出对比图
Fig． 5 Comparison of the prediction output of BP neural network and
multiple linear regression and desired output

预测精度更高． 对两种模型预测结果的相对误差进行
对比，如图 6 所示．

图 6 BP神经网络模型与多元线性回归模型相对误差对比图
Fig． 6 Comparison between the relative errors of the BP neural net-
work and multiple linear regression models

由图 6 可知，BP神经网络模型预测结果相对误差
大部分在 10%以内，少数炉次在 10% ～ 20%之间，但
均处于 20%以内;多元线性回归模型预测结果相对误
差仅有一半左右在 10%以内，其余炉次相对误差较
高，波动较大，BP 神经网络模型预测结果明显要好于
多元线性回归模型． 两种模型部分炉次误差较大，主
要是由于生产原料波动以及现场操作问题所致，属于

现场操作复杂性的不可抗拒因素．
将 BP神经网络模型和多元线性回归模型预测结

果的相关参数进行比较，如表 7 所示．

表 7 多元线性回归模型和 BP神经网络模型预测结果对比
Table 7 Comparison of the prediction results of the BP neural network
and multiple linear regression models

模型形式 标准差
平均

误差 /%
最大

误差 /%
最小

误差 /%

多元线性回归模型 0. 311 11. 56 42. 93 0. 27

BP神经网络模型 0. 285 5. 34 19. 35 0. 07

由表 7 可知，BP 神经网络模型预测结果的标准
差、平均误差、最大误差以及最小误差均较小，因此 BP
神经网络模型更适合应用在 IF 钢生产过程铝耗的预
测上．

3 结果与讨论

BP神经网络铝耗预测模型能够较为准确地预测
出不同工艺条件下的铝耗情况，在此模型基础上，分析

不同冶炼工艺对铝耗的具体影响．
3. 1 ＲH进站氧活度和脱碳结束氧活度对铝耗的影响
将 ＲH进站钢液温度和吹氧量分别设定在1615 ℃

和 100 m3，不同 ＲH进站氧活度条件下，脱碳结束氧活
度与铝耗的关系如图 7 所示．

图 7 不同 ＲH进站氧活度条件下铝耗与脱碳结束氧活度的关系
Fig． 7 Ｒelationship between the aluminum consumption and oxygen
activity after decarbonization under the conditions of different oxygen
activities before ＲH

由图 7 可知，ＲH进站氧活度相同时，铝耗随着脱
碳结束氧活度的上升而上升;脱碳结束氧活度相同时，

铝耗随着 ＲH进站氧活度的上升而上升． 当脱碳结束
氧活度或者 ＲH进站氧活度降低 0. 005%左右时，铝耗
降低 0. 07 ～ 0. 08 kg． 主要是因为随着 ＲH进站氧活度
和脱碳结束氧活度的提高，钢中自由氧含量上升，脱氧

用铝耗量增多．
该钢厂生产 IF钢过程所用铝合金为纯铝粒，铝与

钢液中氧发生如下反应［15］:

2［Al］+ 3［O ］ Al2O3 ( s) ． ( 3)
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铝粒进入钢液以后，除了与自由氧发生氧化反应

以外，部分直接进入炉渣、炉气或成为钢液中酸溶铝．
将铝粒与钢液中自由氧反应的比例定义为铝脱氧有效

利用系数，如下式所示:

η =
WAl理论

WAl实际
× 100% ． ( 4)

式中，WAl理论为理论铝耗量，WAl实际为实际铝耗量，单位

均为 kg．
通过式( 3 ) 计算，钢中自由氧含量降低 0. 005%，

理论铝耗量降低 0. 05625 kg，而实际铝耗量降低
0. 07 ～ 0. 08 kg，因此铝脱氧有效利用系数为70. 31% ～
80. 36% ．
该厂平均铝耗为 1. 359 kg，平均 ＲH 进站钢液温

度、吹氧量以及脱碳结束氧活度分别为 1617 ℃、
83. 6 m3和 0. 034% ． 由图 7 可知，脱碳结束氧活度为
0. 035%时，平均铝耗对应的 ＲH 进站氧活度在
0. 070%左右，因此为了降低铝耗，应将 ＲH 进站氧活
度保持在 0. 070%以下，但过低的 ＲH进站氧活度不利
于脱碳反应进行，因此建议 ＲH 进站氧活度控制在
0. 050% ～ 0. 070%，脱碳结束氧活度小于 0. 035% ．
3. 2 ＲH进站钢液温度和吹氧量对铝耗的影响
将 ＲH进站氧活度和脱碳结束氧活度分别设定在

0. 065%和 0. 035%，不同吹氧量条件下，ＲH进站钢液
温度与铝耗的关系如图 8 所示．

图 8 不同吹氧量条件下铝耗和 ＲH进站钢液温度的关系
Fig． 8 Ｒelationship between aluminum consumption and steel tem-
perature before ＲH under the conditions of different blowing oxygen
quantities

由图 8可知:当吹氧量一定时，铝耗随 ＲH 进站钢
液温度的升高而降低; 当 ＲH 进站钢液温度小于
1630℃时，ＲH进站钢液温度增加 35 ～40℃，铝耗降低 1
kg左右． 当 ＲH进站钢液温度大于 1630℃时，铝耗降低
趋势减弱． 主要是因为随着 ＲH进站钢液温度的升高，
升温用铝耗量降低，当钢液温度达到某一值时，不需要

额外加铝升温也能使钢液温度满足下一工序［16］． 因此
应当控制 ＲH 进站钢液温度在 1630 ℃以上，但过高的

ＲH进站钢液温度会增加转炉负担，降低炉衬使用寿命，
因此 ＲH进站钢液温度也不宜过高，建议 ＲH进站钢液
温度控制在 1630 ～1640℃之间．
铝粒加入钢液后通过铝的溶解和铝热反应放热来

达到提高钢液温度的目的，铝的溶解热对钢液温度的

提升作用较小［17］，可忽略不计，因此当吹氧量一定时，

钢液温度的提升主要靠铝热反应进行，如式( 3) 所示，
其反应焓 ΔH = － 1218. 8 kJ·mol －1 ． 可得

ΔT =
ΔH ×

WAl × 1000
27 × η

CPsteel ×Wsteel × 1000
=
51. 3 ×WAl × η

Wsteel
． ( 5)

其中，ΔT为铝热反应导致的升温变化，℃ ; WAl为加入

铝粒质量，kg; Wsteel为钢液质量，t，具体计算按 300 t 计
算; CPsteel为钢液比热容，kJ·kg

－1·℃ －1 ．
铝热反应放热除了用于钢液升温以外，可能有一

部分热量以辐射、热传导等方式损失到周围空气或设
备中． 将铝热反应放热量用于钢液升温的比例定义为
铝热反应升温利用系数，如下式所示:

η' =
ΔT实际
ΔT理论

× 100% ． ( 6)

其中，ΔT实际和 ΔT理论分别为 1 kg 铝耗引起钢液温度理
论和实际的变化，℃．
由式( 5) 可知，铝耗为 1 kg时，钢液温度理论上提

高 36 ～ 41 ℃，与图 8 反映出来的温度提高值几乎相
同，说明铝热反应放热损失较小． 取 1 kg 铝耗引起钢
液温度理论变化和实际变化的中值进行计算，可得铝

热反应升温利用系数在 97. 4%左右．
当 ＲH进站钢液温度相同时，铝耗随吹氧量的升

高而升高，主要是因为吹氧量升高，钢中自由氧含量提

高，脱氧用铝耗量增多． 当吹氧量大于 100 m3 时，铝耗

升高速度加快，其原因如图 9 所示．

图 9 升温氧和脱碳氧对于铝耗的影响对比
Fig． 9 Comparison of the effects of oxygen for decarburization and
temperature on aluminum consumption

吹氧主要有脱碳和升温两个目的［18］，图 9 为只吹
入升温氧和只吹入脱碳氧时铝耗对比情况，从图中发
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现仅吹入脱碳氧时，吹氧量一般较小，大部分在 100 m3

以下，仅吹入升温氧时，吹氧量一般较大，大部分在

100 m3 以上． 说明当吹氧量大于 100 m3 时，吹氧量中

升温氧量占比将会大幅度提高，使得铝耗大幅度提高，

因此建议将吹氧量控制在 100 m3 以下．
假设吹入氧气为标况下气体，且吹入氧气全部与

铝发生反应，则由式( 3) 可得，所需铝量为

W铝 =

VO2
× 1000
22. 4 × 4 ÷ 3 × 27 ÷ 1000

Wsteel
=
1. 607 × VO2

Wsteel
．

( 7)
其中: W铝 为铝耗量，kg; VO2

为吹入氧气体积，m3 ．

由式 ( 7 ) 计算得，吹入 50 m3 氧气全部与铝反应

时，铝耗量为 0. 268 kg． 但实际生产中，吹入氧气很大
一部分参与脱碳反应． 从图 8 发现，吹氧量小于 100
m3 时，吹氧量增加 50 m3，铝耗增加 0. 1 kg 左右，此时
吹入氧气与铝反应的比例为

η1 =
0. 1
0. 268 × 100% = 37. 3% ． ( 8)

吹氧量大于 100 m3 时，吹氧量增加 50 m3，铝耗增

加 0. 2 kg左右，此时吹入氧气与铝反应的比例为

η2 =
0. 2
0. 268 × 100% = 74. 6% ． ( 9)

图 10 工艺优化前后铝耗情况对比
Fig． 10 Comparison of the aluminum consumption before and after
process optimization

3. 3 工艺优化前后对比
对该钢厂工艺优化前的 845 炉铝耗分布情况进行

了统计，平均铝耗为 1. 359 kg，集中分布在 1 ～ 1. 8 kg
之间( 如图 10 所示) ． 根据以上影响规律，对该钢厂 IF
钢 300 t ＲH 精炼工艺进行优化: ＲH 进站氧活度为
0. 050% ～ 0. 070%，脱碳结束氧活度小于 0. 035%，ＲH
进站钢液温度为 1630 ～ 1640 ℃，吹氧量小于 100 m3 ．
优化后的炉次带入该模型中进行预测，预测结果的平

均误差为 6. 12%，与模型建立过程的仿真结果相当．
对优化后的 26 炉冶炼数据进行统计分析，优化前后的
铝耗情况如图 10 所示．

由图 10 可知，工艺参数优化后，所有炉次铝耗均
小于 1. 8 kg，其中小于 1. 4 kg 的炉次占总炉次的百分
比大幅度提升，平均铝耗由优化前的 1. 359 kg 降低到
1. 113 kg，降幅达 18. 1%，效果显著．
基于 BP神经网络的 IF钢铝耗预测模型在该钢厂

能够达到较好的预测效果，但不同钢厂的实际情况并

不相同，对于铝耗的影响因素可能有所不同，其中操作

水平、原料条件等都可能对铝耗产生影响． 因此，对于
不同的钢厂，要结合自己的实际情况，参考本文模型建

立的基本过程，建立符合自身情况的铝耗预测模型．

4 结论

( 1) 以 ＲH进站钢液温度、吹氧量、ＲH 进站氧活
度和脱碳结束氧活度作为 BP 神经网络模型的输入变
量，铝耗作为输出变量，建立了 BP 神经网络铝耗预测
模型，仿真结果平均误差为 5. 34%，标准差为 0. 285．
与多元线性回归模型进行比较，多元线性回归模型的

平均误差为 10. 52%，标准差为 0. 308，BP 神经网络模
型对铝耗的预测精度更高．
( 2) 铝耗随吹氧量、ＲH 进站氧活度以及脱碳结

束氧活度的升高而升高，随 ＲH 进站钢液温度的升高
而降低． 吹氧量对铝耗的影响最大，脱碳结束氧活度
对铝耗的影响最小，ＲH进站钢液温度和 ＲH进站氧活
度对铝耗的影响几乎相同．
( 3) 脱碳结束氧活度或 ＲH 进站氧活度降低

0. 005%左右时，铝耗降低 0. 07 ～ 0. 08 kg，铝脱氧有效
利用系数在 70. 31% ～ 80. 35% ; ＲH 进站钢液温度增
加 35 ～ 40 ℃时，铝耗降低 1 kg 左右，铝热反应升温利
用系数在 97. 4% 左右; 吹氧量小于 100 m3 和大于

100 m3 时，氧气与铝反应的比例分别为 37. 3% 和
74. 6%左右，吹氧量每增加 50m3，铝耗分别增加 0. 1 kg
和 0. 2 kg左右．
( 4 ) 提出 ＲH 进站钢液温度控制在 1630 ～

1640 ℃，吹氧量控制在 100 m3 以下，ＲH进站氧活度控
制在 0. 050% ～ 0. 070%，脱碳结束氧活度控制在
0. 035%以下的工艺改进措施． 工艺优化后，铝耗从
1. 359 kg降低到 1. 113 kg，降幅达 18. 1% ．
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