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ABSTRACT To solve the high aluminum consumption problem in interstitial{ree steel production in a steel plant an aluminum
consumption prediction model was established by mathematical statistics and BP neural networks. Compared with the multiple linear
regression model this model’s result is more accurate. The influence of different smelting processes on aluminum consumption was
analyzed and the process parameters were optimized. The results show that the amount of aluminum consumption per ton of steel
decreases 0. 07 to 0. 08 kg when the oxygen activity before RH or after decarbonization reduces by 0. 005% . The effective utilization
coefficient of aluminum-deoxidizing is from 70. 31% to 80.35% ; the aluminum consumption decreases about 0. 1 kg when the tempera—
ture of steel before RH increases by 35 to 40 °C. The heating utilization coefficient of aluminum thermal reaction is about 97. 4% .
When the blowing oxygen quantity is less than 100 m® and greater than 100 m® the ratio of oxygen reacting with aluminum is about
37.3% or about 74. 6% respectively and the aluminum consumption increases by 0. 1 kg or 0. 2kg respectively with the blowing ox—
ygen quantity increasing by 50 m®. After the process parameter optimization the aluminum consumption decreases from 1.359 to
1. 113 kg which results in a decrease of 18. 1% .
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Table 1 Eigenvalue and principle component contribution rate
/% /%
1 2.018 28. 823 28.823
2 1.230 17.567 46. 390
3 1. 037 14. 818 61.208
4 0.913 14.183 75.391
5 0.778 11.116 86. 507
6 0. 677 9. 668 96. 175
7 0. 268 3.825 100. 000
1 BP
Fig.1 Structure diagram of a threedayer BP neural network 1 1 3
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Table 2  Significant results between different smelting processes and aluminum consumption

RH RH
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Fig.2 Relationship between different smelting processes and aluminum consumption: ( a) relationship between aluminum consumption and steel tem—
perature before RH; ( b) relationship between aluminum consumption and blowing oxygen quantity; ( ¢) relationship between aluminum consumption and

oxygen activities before RH; ( d) relationship between aluminum consumption and oxygen activity after decarbonization
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Table 3  Correlation coefficients between different smelting processes

and aluminum consumption

RH
\RH i RH RH

r
n z xy — Z x z y -0.527 0. 685 0.533 0. 395
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; 10%
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Table 4 Training parameters of the aluminum consumption prediction model with BP neural networks

1 8 0.001 0.9 0. 0001 tansig tansig purelin trainlm
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Table S Simulation results of the aluminum consumption prediction model with BP neural networks

kg /kg 1% / kg / kg 1%

1 1.41 1.31 7.00 44 1.10 1.08 1.39
2 1.59 1. 67 4.56 45 0.96 0. 89 6.91
3 1.21 1.17 3.08 46 1.43 1.49 3.90
4 0.95 0.97 2.11 47 1.04 1. 06 1.99
5 1.51 1. 44 4.20 48 1.28 1.17 8.56
6 1.48 1.42 3.95 49 1.31 1.10 16. 04
7 1.22 1.39 13.53 50 1.06 0.99 7.23
8 1. 40 1.37 2.43 51 1.72 1. 60 6.73
9 1. 40 1.28 8.38 52 1.15 1.04 9.50
10 1.10 1. 06 4.03 53 1.35 1.27 5.94
11 1.65 1.58 3.85 54 1. 06 1.01 4.49
12 1.33 1.24 7.02 55 0.89 1.07 19.35
13 1.46 1.43 2.09 56 1.63 1.71 5.18
14 1.42 1.35 5.36 57 1.31 1.25 4.77
15 0.92 0.92 0.07 58 1.54 1.39 9.47
16 1.17 1.23 5.03 59 1.73 1. 64 5.63
17 1.20 1.12 6.18 60 0.89 0.91 2.73
18 1.63 1.59 2.46 61 1.38 1.41 2.15
19 1.55 1.48 4.29 62 0.91 0.96 5.08
20 1.42 1.50 5.39 63 0.91 0.96 4.88
21 1.45 1.38 4.72 64 0.96 0.98 2.48
22 1.92 1.90 1.07 65 1.98 1.92 3.01
23 1.56 1. 60 2.83 66 1.05 1.03 1.89
24 1.69 1.52 10. 13 67 1.73 1.59 8.10
25 1.28 1.34 4.48 68 1.30 1.20 7.30
26 0.93 0.90 3.09 69 1.19 1.23 3.00
27 0.70 0. 80 12. 88 70 1. 09 1. 00 8.47
28 1.23 1.26 2.33 71 1.16 1.04 10.52
29 1.03 0.97 5.76 72 1.52 1.47 3.51
30 1.52 1.44 5.14 73 1.30 1.22 6.38
31 1.07 1.09 1.89 74 1.32 1.29 2.90
32 1.31 1.21 7.20 75 0.83 0.86 3.36
33 1.27 1.22 4.04 76 1.26 1.19 5.69
34 2.35 2.41 2.79 77 1.38 1.33 3.54
35 1.10 1.17 6.29 78 1.33 1.41 6.08
36 1.08 0.99 8.25 79 1.54 1.51 1.57
37 0.93 0.93 0. 64 80 1.15 1.23 7.41
38 1.83 1.89 3.24 81 1.49 1.32 11.01
39 1.49 1.41 5.15 82 1. 15 1.22 6.02
40 1.57 1.49 4.92 83 0.97 0.95 2.57
41 1. 11 1.09 2.23 84 1.20 1.10 8.03
42 1. 66 1.72 3.87 85 1. 09 1.04 4.07
43 0.84 0.90 7.17
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Table 6 Coefficients of multiple linear regression Table 7 Comparison of the prediction results of the BP neural network
and multiple linear regression models
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Fig.5 Comparison of the prediction output of BP neural network and RH 1615 C
multiple linear regression and desired output 100 RH
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6 BP Fig.7 Relationship between the aluminum consumption and oxygen
Fig.6 Comparison between the relative errors of the BP neural net— activity after decarbonization under the conditions of different oxygen
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process optimization
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