39 4 1535541 2017 4
Chinese Journal of Engineering Vol.39 No.4: 535—541 April 2017
DOI: 10.13374/j. issn2095—9389.2017.04. 008; http: //journals. usth. edu. cn

X70

1) 1) 1) 1) 2) = 2) 2)

1) 100035 2) ( ) 100083
X E-mail: Xingyy@ ankosri. com

. X70 4 MPa 0.2 MPa

N X70
. 4 MPa 0.2 MPa X70
X70 1.9X1077; X70
N N ; X70

TG172.3; TE832

Hydrogen embrittlement susceptibility of the X70 pipeline steel substrate and weld in

simulated coal gas containing hydrogen environment
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ABSTRACT The diffusion and accumulation behaviour of hydrogen in X70 pipeline steel were investigated via hydrogen permeation
test hydrogen diffusion simulation and hydrogen content test technology in a simulated coal gas environment (4 MPa total pressure
0.2 MPa hydrogen partial pressure) . The mechanical properties of the X70 pipeline steel substrate and weld in a simulated coal gas
environment were also analyzed through impact toughness test crack propagation test notch tensile test and slow strain rate tensile
test. Experimental results show that hydrogen absorbed on the X70 steel surface in a simulated coal gas environment spreads into the
inside of the X70 steel and the internal diffusion hydrogen mass fraction is 1.9 x 107 after reaching a steady state. Compared with
the original performance in air there is no decline in the impact performance notched tensile and slow strain rate tensile strength
plasticity and damage tolerance of the X70 pipeline steel substrate and weld in simulated coal gas. Results show that in a coal gas en—
vironment X70 steel has a lower risk of hydrogen embrittlement.
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Fig.5 Crack extension morphology of X70 steel base metal in coal gas containing hydrogen environment: ( a) A side before exposure; (b) A side af—
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Fig.6 Crack extension morphology of X70 weld metal in coal gas containing hydrogen environment: (a) A side before exposure; ('b) A side after
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