39 4 1550556 2017 4
Chinese Journal of Engineering Vol.39 No.4: 550—556 April 2017
DOI: 10.13374/j. issn2095—9389.2017.04. 010; http: //journals. ustb. edu. cn

( ) 264209

X E-mail: yuezhenming@ sdu. edu. cn

N . 0.8mm  AZ31B

ABAQUS—Explicit ( Vumat) ~ ABAQUS—Implicit ( Umat)

TG386

Springback prediction of magnesium alloy sheet with nonlinear combined hardening
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ABSTRACT Springback is regarded as one of the main defects that occur in sheet-metal forming processes. Therefore improving its
prediction accuracy especially under highly nonlinear conditions is important for researchers. In this paper constitutive equations
that consider the isotropic hardening kinematic hardening and distortional hardening are proposed for magnesium alloy sheet. The
work hardening and springback behaviors of 0. 8-mm-thick AZ31B magnesium alloy sheet were investigated and simulated. The AZ31B
specimen was subjected to a bending process after the pre-tension deformation which aided in the observation of its springback behav—
ior under nonlinear loading paths. Simulations were conducted using ABAQUS—Explicit ( Vumat) and ABAQUS—Implicit ( Umat) .

Comparisons between the experimental and numerical results demonstrate the strong influence of the kinematic hardening on the spring—
back prediction of magnesium alloy sheet.
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“21
7 ( HCP) ’,

: 2016—10—11
(51605257)



- 551

. Prager”’

( Bauschinger effect)

Sabourin

. Chaboche  Jung

A—F

.14
Uemori

. Chung "

Chaboche

0.8mm AZ31B

ABAQUS

induced anisotropy)
1.1

Ziegler

5-7

10

12-13

. Yoshida

( hardening—

16719 .
1.2
o X.
R ( Helm—
holtz free energy)
w21
o=AE (1)
X=2Ca (2)
R=0r. (3)
A ¢ 0
s
F
AS X R) =S, -X|w-R-o, (4)
F(SXRdY) = |8,-X|, R+ 30X X507,
(5)
o,
Hill48
Francois Z( (7)) ( Francois (
(6)) )
S, ( distortional hardening)
S,
So
So: S,
§":§+2X“(R:-0'y)§ (6)
o' S, XX
S= S N (Rea) X (Rea) > (D)



. 552« 39 4
S,=8-8, (8)
S LX 9
S Txxt )
X, X, ABAQUS Vumat/Umat
.S, Fortran —
( nor— — . Vumat
mality rule) F Dy Umat
a r
. * - _
D' =i aF _ i (10) ( * INITIAL CONDITIONS TYPE = SOLU
- o~ TION) SDV
g:—)\%:/\(ﬁx—(la) (11) 2 _
;= Ag—ng(nr—br) (12)
A
1 . 0.8 mm
X®S AZ31B
P _ P D i & el _
E _Ed £ +X“(R+0'y) (13) ( )
H':(S,-X) ’ ’
nl==—0—Q5— (14)
=S -X,
c S8, (8:X) (X:ny)
n =n; - n, + S()
- ZXU(R"'U',V)* Xn({ X)(R"' y)i
(15) 0.2.0.4.0 6.0 mm 20
S,:8,) (n}: X
n':(fo 70)(7xl 72) +1 (16) mm 30 mm.
2X,(R+a)
K( )
A’
K=A-(A:n") ® (17)
p. . p 2 x x -
H,=n"A:n" +Cn*: (a@-n") +Qn'(ar -n')
(18) 2 3
. Zang ¥ -
Newton—Raphson -
. DP780
1 .- (a) 7 (b) ( - mm)

Fig.1 Geometries and dimensions: ( a) test specimen; (b) bending die ( unit: mm)
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Fig.4 Finite element models: ( a) three-point bending model; ( b) before and after springback
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Fig.6 Contrast diagrams of the experimental springback angle and the equivalent plastic strain in the simulation: ( a) the springback angle at bending

depths of 20 mm and 30 mm; ( b) the equivalent plastic strain at a bending depth of 20 mm in the simulation
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