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ABSTRACT A blast furnace lining mathematical model was established based on the inverse heat transfer problem. After determi—
ning the boundary conditions of the model this inverse heat transfer problem is divided into three problems which are the direct prob—
lem the sensitivity problem and the adjoint problem and these were solved using the conjugate gradient method. The feasibility of this
model was proved by the inversion results of different shape functions and then it was discussed that the initial guess shape and number
of measurement points effect on the inversion results. The results show that the accuracy of the inverse solution is independent of the
the initial guess shape but the number of measurement points has some impact on these results whereby the more points are meas—
ured the better the curve features are captured. An accurate inverse solution can be obtained with fewer measurement points and an
average relative error within 3%  even though the arrangement of more points can achieve a slightly better solution.

KEY WORDS lining erosion; boundary shape; inverse heat conduction problem; conjugate gradient method

( inverse heat conduction problem TH-

N N . . cp) 7
N Stolz * 1960
1
Tikhonov
Arsenin (1977 ) .Beck
(1985 ) .Blackwell f(1981 ).
. Weber ’ (1981 ) .Eldén Fou-

© 2016—08—11
( FRE—TP—15—022A3)



- 575

rier (2000 ).

11-12

( conjugate gradient)

Hesse
16
17
* ( CFD)
20
1
(
1
TO
9o
x=f(y)

13-15

1

Fig.1 Two-dimensional schematic diagram of the calculation area
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1 11 10
Table 1 Temperartures and coordinates of measurement points for shape 2 11
function 1
x /m y /m /C 1%
1 0.5 0 230. 50 0.83% 39%
2 0.5 0.1 203.76 (2)
3 0.5 0.2 175. 17 _ _ 0.45-0.4y 0<y<0.5;
A o 03 20329 v _{0.25 £0.4(y-0.5) 0.5<y<l.
5 0.5 0.4 308. 40 (11)
6 0.5 0.5 487. 64
7 0.5 0.6 707. 81 5
8 0.5 0.7 869. 31 11
9 0.5 0.8 872.59
10 0.5 0.9 748.91 3
11 0.5 1.0 670.73
2 - (a) P (b)
Fig.2 Real and calculated shapes for shape function 1: (a) shape curve; (b) temperature nephogram
2
Table 2 Temperartures and coordinates of measurement points for shape 1% 0.73%
function 2 3%
x /m y /m /°C 2.3
1 0.5 0 848.79 qo =
2 0.5 0.1 723.19 50000 Wem > x=f(y) =0
3 0.5 0.2 544. 80 E=10Wem ™' *K™ 2
4 0.5 0.3 388.90 M 11 21.
5 0.5 0.4 279. 94
6 0.5 0.5 240. 15
7 0.5 0.6 279.94
8 0.5 0.7 388. 90 4.
9 0.5 0.8 544. 80 11 11
10 0.5 0.9 723.19 10 21 21
1 0.5 1.0 848.79 20
4 M=11 21
11 10 3 11
0.83% 0.81% 3%
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Fig.3 Real and calculated shapes for shape function 2: ( a) shape curve; (b) temperature nephogram
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Fig.4 Real and caleulated shapes for shape function 1 (M = 11 Fig.5 Real and calculated shapes for shape function 2 (M = 11
and M = 21) and M = 21)
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6
Fig.6 Real and calculated shapes for shape function 1 ( lst initial

inner wall shape functions)
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Fig.7 Real and calculated shapes for shape function 2 (2nd initial

inner wall shape functions)
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