39 4 :611-618 2017 4
Chinese Journal of Engineering Vol.39 No.4: 611—618 April 2017
DOI: 10.13374/j. issn2095—9389.2017.04.017; http: //journals. ustb. edu. cn

210094
X E-mail: houbl@ njust. edu. cn

( ELM)

’ 1 ' ’

TP241; TH113

Parameter identification of a shell transfer arm using FDA and optimized ELM
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ABSTRACT To identify the unmeasurable parameters of a shell transfer arm a virtual prototype of the shell transfer arm was built
and the built virtual prototype is regard as the source of the sample data. Considering the continuity and smoothness properties of the
sample data features of the curves were extracted by functional data analysis and functional principal component analysis and the fea—
tures and unknown parameters were used to train the extreme learning machine ( ELM) . At the meantime the weight connecting the
input layer and hidden layer and the threshold of the hidden nodes were optimized by particle swarm optimization ( PSO) to improve
the identification accuracy and generalization performance of ELM. At last the presented method was verified by simulation data and
test data. The identification results of the simulation data show that the optimized ELM has higher identification accuracy and better
generalization performance. Also the presented method is proved to be feasible and effective by comparing the real angular velocity
and the angular velocity from the virtual prototype with respect to the test data identification results.
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Fig.1 Structure of the shell transfer arm
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Fig.2 Arm motion procedure: ( a) motion and location procedure;
('b) angular velocity of the arm
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Fig.3 Simulation model of the shell transfer arm: ( a) co-simulation model; (b) control model; ( ¢) hydraulic model
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Fig.4 Functional results: (a) B spline basis function system; (b) angular velocity of the arm after function procedure; ( c) the first ten principal

component functions; ( d) the proportion of the first ten principal components
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Fig.5 Test procedure: ( a) photograph of test equipment; (b) test results

2
16 Table 2 Identification results comparison of ELM and optimized ELM
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o, = 0.4 k Table 3 Identification results of the test data
T ) Py /MPa S m
3.1 ] 1 3. 0220 0. 9982 0. 5341
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1 3 3. 0489 1. 0011 0. 5613
4 3.0562 0.9975 0. 5568
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Table 1 Comparison of the performance of ELM and optimized ELM
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Fig.6 Comparison of the test angular velocity and identified angular
3 . velocity
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