
工程科学学报，第 39 卷，第 4 期: 611--618，2017 年 4 月
Chinese Journal of Engineering，Vol． 39，No． 4: 611--618，April 2017

DOI: 10． 13374 / j． issn2095--9389． 2017． 04． 017; http: / / journals． ustb． edu． cn

函数型数据分析与优化极限学习机结合的弹药传输
机械臂参数辨识
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摘 要 为实现弹药传输机械臂中不可测参数的辨识，建立了机械臂的虚拟样机，并将其作为样本数据的来源;考虑到样本

数据的连续性和平滑特性，使用函数型数据分析和函数型主成分分析对样本数据进行了特征提取，并利用提取的特征参数和

待辨识参数作为训练样本对极限学习机( ELM) 进行了训练． 为提高极限学习机的辨识精度和泛化能力，利用粒子群算法对
极限学习机的输入层与隐含层的连接权值和隐含层节点的阈值进行了优化． 最后，分别利用仿真数据与测试数据对此方法
进行了验证，仿真数据的辨识结果表明，优化后的极限学习机具有更高的辨识精度和泛化能力;同时，通过对比将测试数据的

辨识结果代入模型中进行仿真得到的支臂角速度与测试角速度，验证了此方法的可行性和有效性．
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ABSTＲACT To identify the unmeasurable parameters of a shell transfer arm，a virtual prototype of the shell transfer arm was built，
and the built virtual prototype is regard as the source of the sample data． Considering the continuity and smoothness properties of the
sample data，features of the curves were extracted by functional data analysis and functional principal component analysis，and the fea-
tures and unknown parameters were used to train the extreme learning machine ( ELM) ． At the meantime，the weight connecting the
input layer and hidden layer and the threshold of the hidden nodes were optimized by particle swarm optimization ( PSO) to improve
the identification accuracy and generalization performance of ELM． At last，the presented method was verified by simulation data and
test data． The identification results of the simulation data show that the optimized ELM has higher identification accuracy and better
generalization performance． Also，the presented method is proved to be feasible and effective by comparing the real angular velocity
and the angular velocity from the virtual prototype with respect to the test data identification results．
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弹药传输机械臂是大口径火炮自动装填系统的一

个重要部件，主要用于接收弹仓内被推弹器推送出来

的弹丸，再将该弹丸传送至输弹线上由输弹机输弹入

膛后返回原位［1］． 因系统复杂且工作环境恶劣，弹药
传输机械臂始终存在定位精度超差的情况，严重降低

了整个弹药自动装填系统的可靠性，亟待进行改进设
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计． 建立其准确的动力学模型，对于推断机械臂在运
行过程中动态特性的变化情况，进而根据动态特性的

变化提出改进设计建议乃至实现故障诊断和预测，都

具有重要的意义． 弹药传输机械臂是一个复杂且多参
数的机电液一体化系统，关键参数的确定是建模过程

中的一个核心问题． 然而，弹药传输机械臂中的若干
关键参数是不可测或难以测量的，只能通过辨识的方

法来获取．
对于弹药传输机械臂而言，由于很难求出其可测

响应量至待辨识参数的解析表达式，因此无法利用传

统的基于算法的辨识方法来对其未知参数进行辨识，

而以神经网络为代表的机器学习方法可以根据已知的

样本估计数据之间的依赖关系，从而对未知的数据进

行预测和判断，往往能方便的解决该类问题． 如徐东
辉等［2］采取混沌径向基 ( ＲBF) 神经网络结合 Matlab
仿真的方法对油膜模型参数进行辨识，以提高动态参

数的辨识精度，进而得出了不同工况下的油膜动态特

征; Kayacan等［3］利用 2 类模糊神经网络实现了非线性
动态系统的参数辨识; Ugalde 等［4］提出了一种改进的
神经网络算法，有效的降低了运算的成本，并成功的将

其应用于柔性机械臂的参数辨识中．
但是，在利用神经网络对弹药参数机械臂的参数

进行辨识时，需要包含待辨识参数和可测响应曲线特

征参数的样本进行训练． 真实的实验能够获得高质量
的样本，但对于弹药传输机械臂而言，大量真实的实验

不仅耗费大量的人力物力，且对于系统的内在参数，也

很难进行人为的设定，而通过虚拟仿真的方法获取样

本则比较容易实现． 因此，本文为实现对弹药传输机
械臂的参数辨识，建立了机械臂的虚拟样机，将其作为

样本数据的来源，通过对待辨识参数的抽样和仿真实

验，获得相应的样本数据;考虑到样本数据的连续性和

平滑性，利用函数型数据分析( FDA) 和函数型主成分
分析( FPCA) 对样本数据进行特征提取，将提取的特征
和待辨识参数作为训练样本进行极限学习机的

( ELM) 的训练; 同时，为提高极限学习机的辨识精度
和泛化能力，利用粒子群算法( PSO) 对极限学习机的
输入层与隐含层的连接权值和隐含层节点的阈值进行

优化． 最后分别利用仿真数据和实验数据对弹药传输
机械臂的参数进行辨识，以验证此方法的可行性和有

效性．

1 弹药传输机械臂建模与仿真

1. 1 虚拟样机建模
弹药传输机械臂的结构如图 1 所示，其中支臂安

装在火炮右耳轴上，可绕耳轴转动;托弹盘用于承载弹

丸;减速箱由两级直齿轮传动和一级蜗轮蜗杆传动组

成;小平衡机由平衡油缸和蓄能器组成，用于平衡机械

臂的重力矩，减小驱动电机的负载;弹药传输机械臂设

置有角位移传感器和角速度传感器( 测速电机) ，用于

提供机械臂相对于起落部分的角度及角速度信号，使

机械臂转至正确位置． 根据弹药传输机械臂的拓扑结
构，在动力学仿真软件 ＲecurDyn中建立了机械臂的动
力学模型，小平衡机液压回路模型则利用 Simulink 中
的 SimHydraulics模块建立．

图 1 弹药传输机械臂
Fig． 1 Structure of the shell transfer arm

1. 2 控制系统建模
机械臂由两个并联的串励电机驱动，其运动过程

如图 2( a) 所示． AB为支臂的转动范围，若支臂按需求
从 C点转动到 D 点，则整个运动过程可分为两段: 在
CE段，只需控制电机的转动方向，给电机施加额定电
压，使电机全速运动以带动支臂快速向 D 点运动; 当
支臂转动到 E 点，系统变成一个完全的闭环位置系
统，把支臂准确定位在 D 点，其运动速度曲线如图 2
( b) 所示．

图 2 机械臂运动过程． ( a) 运动及定位过程; ( b) 速度曲线
Fig． 2 Arm motion procedure: ( a) motion and location procedure;
( b) angular velocity of the arm

根据上述分析，在 Simulink中建立电机、驱动和控
制信号的模型，作为弹药传输机械臂的控制模块．

1. 3 待辨识参数的选择与抽样仿真

根据 1. 1 节 ～ 1. 2 节的分析，最终建立的弹药传
输机械臂的联合仿真模型如图 3 所示，包括以下三个
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图 3 弹药传输机械臂仿真模型 . ( a) 联合仿真模型; ( b) 控制模型; ( c) 液压模型
Fig． 3 Simulation model of the shell transfer arm: ( a) co-simulation model; ( b) control model; ( c) hydraulic model

部分: ( 1) 在 ＲecurDyn中建立的动力学模型，用于计算
机械臂的动力学参数; ( 2 ) 在 Simulink 中建立的控制
模块，用于控制回路的计算; ( 3) 在 SimHydraulics 中建
立的液压回路，用于计算小平衡机力．
根据系统的实际情况，待辨识的三个参数为液

压模型中蓄能器的初始压力 P0，控制模型中测速电

机的灵敏度 S，以及机械系统中蜗轮蜗杆的摩擦系数
μ． 根据设备使用方提供的数据，P0 的范围为［2. 8，
3. 5］MPa，S 的范围为［0. 9，1. 05］，μ 的范围为
［0. 11，0. 17］． 本文利用拉丁超立方抽样法对这三
个参数在其分布范围内进行抽样，并根据抽样结果

进行虚拟仿真试验，共获得 100 组支臂的角速度
曲线．

2 基于函数型数据分析和函数型主成分分
析的曲线特征提取

2. 1 函数型数据分析和函数型主成分分析方法
函数型数据分析方法的最大贡献者是加拿大学者

Ｒamsay［5--7］． 在函数型数据分析中，观测数据被看作一
个整体而非离散的点，表示为光滑的曲线或连续的函

数，然后以函数视角对其进行分析． 与传统的分析方
法相比，函数型数据分析很少依赖于模型的构建和假

设条件，对于观测对象的数据观测点和观测次数是否

相同并无要求;函数型数据分析的另一个特点是可以

实现从有限维数据到无限维数据的转换，得到的数据

信息更丰富可靠． 如今函数型数据分析在地质化
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学［8］、神经科学［9］、能源消耗［10--11］等领域得到了较为
广泛的应用．
在函数型数据分析中，假设第 i 个观测样本包含

一系列离散的观测值 yi1，yi2，…，yin，其函数的形式由 K
个已知基函数 k ( t) 的线性组合表示:

x( t) = ∑
K

k
ckk ( t) ． ( 1)

其向量形式为:

x = cT = Tc． ( 2)
式中，c 为长度为 K 的系数向量，为基函数 k 组成

的函数型向量．
对于非周期性的数据，通常是利用 B 样条基函数

展开． B样条基函数由阶数 a 和节点序列 τ( τ l，l = 1，
2，…，L － 1) 确定，通过以下方程组递归求解［12］:

Bl，0 ( t) =
1， τ l ＜ t ＜ τ l + 1，

0， 其他{ ．

Bl，a ( t) =
t － τ l

τ l + a － τ l
Bl，a － 1 ( t) +

τ l + a + 1 － t
τ l + a + 1 － τ l + 1

Bl + 1，a － 1 ( t) ．

( 3)
系数向量 c可由最小二乘法估计，令 Φ为包含元

素 k ( tj ) 的 n × K阶矩阵，最小化误差平方和:
SMSSE( y | c) = ( y －Φc) TH( y －Φc) ． ( 4)

其中，H为加权系数．
其加权最小二乘解为:

ĉ = ( ΦTHΦ) － 1ΦTHy． ( 5)
使用最小二乘法进行求解时，选择的 K 越大，则

数据估计的偏差越小，但是数据估计的方差越大，平滑

性越差［6］，为有效的控制平滑程度，引入粗糙惩罚函数

λ × PENm ( x) ，其中 λ为平滑系数，PENm ( x) 为 m阶粗
糙惩罚函数

PENm ( x) = ∫［Dmx( s) ］2ds =

∫［DmcT( s) ］2ds = ∫ cTDm( s) Dm( s) Tcds =

cT［∫ Dm( s) Dm( s) Tds］c = cTJc． ( 6)

式中，Dm 为 m阶微分算子，J = ∫ Dm( s) Dm ( s) Tds．

利用最小二乘法，在估计系数向量时，可最小化以

下参数:

PENSSEm ( y | c) = SMSSE( y | c) + λPENm ( x) =
( y －Φc) TH( y －Φc) + λcTJc． ( 7)

对 c求一次导数，可得基函数系数向量的估计值
ĉ = ( ΦTHΦ + λJ) － 1ΦTHy． ( 8)

函数型主成分分析 ( FPCA) 是经典多源分析中的
主成分分析( PCA) 到希尔伯特空间的推广，其主要思
想与主成分分析一致，同样是主成分得分的方差最大

化． 主成分分析一般通过寻找协方差矩阵的特征值和

特征向量的方式求解． 对于函数型主成分分析，根据
Ｒamsay等［6--7］的推导，特征函数满足以下方程:

∫ v( s，t) ξ( t) dt = ρξ( s) ． ( 9)

其中，ρ为相应的特征值，v ( s，t) = N － 1∑
N

i = 1
xi ( s) xi ( t)

为协方差函数，样本是去均值的，N － 1∑
N

i = 1
xi ( t) ． 通过

定义协方差算子 V，Vξ = ∫ v(·，t) ξ( t) dt，式( 9 ) 可表
示为:

Vξ = ρξ． ( 10)
式中，ξ为特征函数而不是特征向量．
主成分函数同样需要进行平滑处理，考虑最大化

带有粗糙度惩罚函数的样本方法

PCAPSV( ξ) =
var ∫ξxidt

‖ξ‖2 + λ × PEN2 ( ξ)
． ( 11)

其中，λ为平滑系数，粗糙度函数 PEN2 ( ξ) =‖D2ξ‖2 =

bTJb，D2 表示 2 阶微分算子，J = ∫ D2( s) D2T ( s) ds．

对于样本数据，基函数展开式为 xi ( t) = ∑
K

k = 1
cikk ( t) ，

向量形式为 x = C，其中 C为 n × K 阶矩阵;对于特征

函数，基函数展开式为 ξ( s) = ∑
K

k = 1
bkk ( s) ，向量形式

为 ξ( s) =  ( s) Tb，其中 b为 K维向量． 令 A为向量 c i

的协方差矩阵，W为元素是基函数内积 wk1，k2 = ∫ k1k2 ds

的 K阶对称矩阵，即 W = ∫Tds． 则式( 11 ) 可表示

为矩阵形式:

PCAPSV = bTWAWb
bTWb + λ bTＲb

． ( 12)

相应的广义特征值问题为:

WAWb = ρ( W + λＲ) b． ( 13)
进行 Cholesky分解W + λＲ = LLT，其中 L是下三角阵，
并定义 S = L － 1，则式( 13) 可表示为

( SWAWST ) ( LTb) = ρ( LTb) ． ( 14)
定义 u = LTb，式( 14) 可表示为:

( SWAWST ) u = ρu． ( 15)
式( 15) 为标准的特征值问题，可依次解出 u、b 和

特征函数． 对于样本数据或者通过测试采集到的数
据，进行函数化并减去均值，与各特征函数计算内积后

便是曲线的特征参数了．
2. 2 弹药传输机械臂角速度曲线特征提取

1. 3 节中，通过仿真试验获得了 100 组支臂的角
速度样本曲线，在进行极限学习机训练前，需提取样本

曲线的特征参数以降低样本的维度，提高训练速度与

效率． 对于 100 组样本数据，首先进行数据的函数化，
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使用 4 阶 B样条基函数进行函数展开，2 阶粗糙惩罚
函数进行数据平滑，平滑系数 λ = 50000． 按照 2. 1 节
的方法进行函数型数据的系数向量计算．
函数化之后进行去均值操作，完成主成分函数的

计算． 图 4( a) 为用于函数展开的 B 样条基函数系统;
图 4( b) 为函数化后的样本角速度曲线; 图 4 ( c) 为前
十阶主成分函数; 图 4 ( d) 为前十阶主成分函数的占
比，即根据式( 15) 计算求解得到的各个特征值占总和

的比率． 如图 4( b) 所示，前 6 阶主成分的累计贡献率
已超过 95%，因此本文仅保留前 6 阶主成分． 需要说
明的是这里的特征值并非需要提取的特征参数，对于

每个样本，或待辨识的测试数据，进行函数化之后，与

选择的前 6 阶主成分函数进行内积计算，所得结果为
主成分得分，即所需要的特征参数． 该特征参数将作
为极限学习机的输入，为一 100 × 6 的矩阵; 而待辨识
参数将作为极限学习机的输出，为一 100 × 3 的矩阵．

图 4 函数化结果． ( a) B样条基函数系统; ( b) 函数化后的支臂角速度曲线; ( c) 前十阶主成分函数; ( d) 前十阶主成分占比
Fig． 4 Functional results: ( a) B spline basis function system; ( b) angular velocity of the arm after function procedure; ( c) the first ten principal
component functions; ( d) the proportion of the first ten principal components

3 弹药传输机械臂参数辨识

3. 1 基于粒子群算法改进的极限学习机算法
3. 1. 1 极限学习机算法
极限学习机是一种典型的单隐含层前馈神经网

络，其随机产生输入层与隐含层的连接权值和隐含层

节点的阈值，且在训练过程中无需调整，只需要设置隐

含层节点的个数，便可获得唯一的最优解，与传统的训

练方法相比，该算法具有学习速度快、泛化能力好等
优点［13］．
假设任意 N 个独立的样本 ( x i，t i ) ，x i =［xi1，xi2，

…，xin］
T∈Ｒn，t i =［ti1，ti2，…，tim］

T∈Ｒm，对于具有 n个

输入节点 m个输出节点，且隐含层节点数为 槇N，激活函
数为 g( x) 的极限学习机的数学模型为

∑
～N

i = 1
β igi ( x j ) = ∑

～N

i = 1
β ig( wix j + bi ) = o j，

j = 1，2，…，N． ( 16)

式中，wi =［ωi1，ωi2，…，ωin］
T 为第 i 个输入层节点与

隐含层节点的连接权值，β i =［β i1，β i2，…，β im］
T 为第 i

个隐含层节点与输出层节点的连接权值，bi 为第 i 个
隐含层节点的阈值．
当隐含层节点数与训练样本数相等时，极限学习

机可以以零误差逼近训练样本，即存在 β i、wi 和 bi，

使得:

Hhβ = T． ( 17)
其中，Hh 为隐含层输出矩阵，

Hh ( w1，…，w～N，b1，…，b～N，x1，…，xN ) =
g( w1x1 + b1 ) … g( w～N x1 + b～N )

  
g( w1xN + b1 ) … g( w～N xN + b～N









) N ×～N

β =
βT

1


βT

～









N ～N ×m

，T =

tT1

tT









N N ×m

．

当激活函数无限可微时，在训练前随机选择 w 和
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b并让其在训练过程中保持不变，则隐含层与输出层
的连接权值 β 可通过求解式( 13) 的最小二乘解获得:

min
β
‖Hhβ － T‖． ( 18)

其解为:

β̂ =H +
h T． ( 19)

其中 H +
h 为隐含层输出矩阵 Hh 的 Moore--Penrose 广

义逆．
由于随机给定的输入层与隐含层间的连接权值 w

及隐含层节点的阈值 b 中有可能存在一些为 0 的元
素，使得部分隐含层节点是无效的，因此极限学习机需

要大量的隐含层节点才能达到理想的精度;而且，由于

w和 b是随机产生的，因此极限学习机的训练结果存
在很大的随机性． 本文将利用粒子群算法对极限学习
机的输入层与隐含层间的连接权值及隐含层节点的阈

值进行优化，以提高极限学习机的计算精度与泛化能力．
3. 1. 2 粒子群算法
粒子群算法是一种模拟鸟群社会行为的群体搜索

算法，具有结构简单、参数较少、易于实现、寻优能力强
等优点［14］． 粒子群算法先在可行解空间中初始化一
群粒子，每个粒子都代表极值优化问题的一个潜在最

优解，用位置、速度和适应度值三项指标表示该粒子特
征，适应度值由适应度函数计算得到，其值的好坏表示

粒子的优劣． 粒子在解空间中运动，通过跟踪个体极
值和群体极值更新个体位置． 在每次迭代过程中，粒
子通过个体极值和群体极值更新自身的速度和位置，即

Vk + 1
id = ωVk

id + c1 r1 ( P
k
id － Xk

id ) + c2 r2 ( P
k
gd － Xk

id ) ，

Xk + 1
id = Xk

id + Vk + 1
id ． ( 20)

其中，ω为惯性权重; d = 1，2，…，D; i = 1，2，…，n; k 为
当前迭代次数; Vid为粒子的速度; c1 和 c2 是加速度因
子，为非负的常数; r1 和 r2 为分布于［0，1］区间的随机
数． 为防止粒子的盲目搜索，其位置和速度一般限制
在［－ Xmax，Xmax］区间内．
3. 1. 3 优化过程
极限学习机训练时，输入层与隐含层的连接权值

w和隐含层节点的阈值 b的维度是由隐含层节点数及
输入参数数目决定的． 因此，在对输入层与隐含层的
连接权值与隐含层节点的阈值进行优化前，需根据训

练样本数确定最优的隐含层节点数．
本文利用预测值与真实值的平均相对误差 E及决

定系数 Ｒ2来评价极限学习机的辨识精度与泛化能力．

(E = ∑
l

i =1

ŷi － yi
y )
i

l，

Ｒ2
r

(
=

l∑
l

i =1
ŷiyi －∑

l

i =1
ŷi∑

l

i =1
y )i

(

2

l∑
l

i =1
ŷ2i (－ ∑

l

i =1
ŷ )i ) (2

l∑
l

i =1
y2i (－ ∑

l

i =1
y )i )2











 ．

( 21)

其中，yi，̂yi i = 1，2，…，l分别为第 i 个样本的真实值和
预测值，l为样本的数目．

E越小，表明极限学习机的辨识精度越好; Ｒ2
r 在

［0 1］之间，Ｒ2
r 越接近 1，说明极限学习机的泛化能力

越好，Ｒ2
r 越接近 0，说明极限学习机的泛化能力越弱．
粒子群算法优化极限学习机可看成一个多目标寻

优的问题，即寻找最优的 w 和 b，使 E 取最小值的同
时 Ｒ2

r 取最大值． 根据实际需求，本文利用约束法将
多目标优化问题转换为单目标优化问题［15］，其数学

模型为:

min E
s． t． Ｒ2

r ＞ 0. 95．
( 22)

由于 w和 b的维度取决于隐含层节点数，因此需
先确定隐含层节点数，整个优化过程如下:

( 1) 根据训练样本数量，选择合适的隐含层节
点数;

( 2) 确定隐含层节点数后，初始化种群，即 w和 b，
并根据式( 21) 计算粒子的适应度值;
( 3) 根据式( 20 ) 更新粒子的位置和速度，计算新

粒子的适应度值，

( 4) 重复步骤( 3) ，直到适应度值满足预定的精度
或达到最大迭代次数之后，输出最优的 w和 b．
当确定最优的 w和 b 之后，即可对极限学习机进

行训练，以实现弹药传输机械臂的参数辨识．
3. 2 系统测试
在进行辨识之前，需对弹药协调器的角速度进行

测试，本文利用 CS--AＲS--02 单轴陀螺仪对其进行测

试． CS--AＲS--02 的量程为 ± 200°·s －1，输出电压为［0，
5］V，分辨率≤0. 15°·s －1，采样频率 1000 Hz． 多次测
量的结果如图 5 ( b) 所示． 从图 5 ( b) 中的 0 ～ 300 ms
的局部放大图可以看出，多次测试的结果存在一定的

差异，导致差异存在的原因如下:系统测试本身存在误

差，由于系统误差和随机误差的存在，两次测试的结果

不可能完全相同;同时，由于弹丸在托弹盘内不是固定

的，因此当协调器支臂运动时，弹丸会在托弹盘内晃

动，这个过程是随机且不可预知的，这也导致了测试结

果之间的差异． 对于弹药传输机械臂而言，这种差异
是可接受的．
3. 3 辨识结果分析
本文中的样本数据由 100 组仿真数据和 4 组测试

数据组成，其中 95 组仿真数据用于极限学习机训练，
剩余 5 组仿真数据和 4 组实验数据用于辨识．
在对极限学习机的 w 和 b 优化前，需先选择合适

的隐含层节点数． 隐含层节点的个数并非越多越好，
当隐含层节点个数与训练集样本数相等时，极限学习

机可以以零误差逼近所有的训练样本，但当隐含层节
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图 5 测试过程． ( a) 测试照片; ( b) 测试结果
Fig． 5 Test procedure: ( a) photograph of test equipment; ( b) test results

点数逐渐增加时，由于过拟合的原因，测试集的预测正

确率反而成逐渐减小的趋势［16］，本文测试集样本数为

95，因此最终选择的隐含层节点数亦为 95．
确定隐含层节点后，即可对极限学习机的 w 和 b

进行优化． 极限学习机的激活函数选择 sigmoid 函数，
种群个数为 50，最大迭代次数为 100，c1 = c2 = 0. 8，惯
性权重 ω采用线性递减的方式: ω( k) = ωmin + ( ωmax －
ωmin ) ( Tmax － k ) /Tmax，ωmax = 0. 9 为初始惯性权重，
ωmin = 0. 4 为迭代至最大次数时的惯性权重; k 为当前
迭代次数; Tmax为最大迭代次数． 设置好相关参数后，根据
3. 1节中的介绍进行仿真计算，即可得到相应的结果．
表 1 为极限学习机与优化后的极限学习机辨识结

果的相对误差与决定系数． 从表 1 中可以看出，优化
后的极限学习机不仅辨识精度有了提高，其泛化能力

也有了很大程度的提高．

表 1 极限学习机与优化后的极限学习机性能对比
Table 1 Comparison of the performance of ELM and optimized ELM

评价指标 评价对象 P0 S μ

Ｒ2
r

极限学习机 0. 9197 0. 9161 0. 8653

优化后极限学习机 0. 9982 0. 9808 0. 9976

E /%
极限学习机 5. 36 1. 04 2. 72

优化后极限学习机 0. 94 0. 32 0. 32

表 2 给出了对于仿真数据的某次辨识过程中三个
待辨识参数的真实值，极限学习机的辨识结果与优化

后的极限学习机的辨识结果的对比． 从表 2 中可以看
出，极限学习机经粒子群算法优化后，辨识结果明显与

真实值更接近．
表 3 为四组测试数据的辨识结果． 由于真实的系

统中，三个待辨识参数是未知的，因此无法将测试数据

的辨识结果与系统的真实值进行对比． 图 6 为将测试
数据的辨识结果的平均值代入模型中进行仿真得到的

表 2 极限学习机与优化后的极限学习机辨识结果对比
Table 2 Identification results comparison of ELM and optimized ELM

待辨识参数 P0 /MPa S μ

真实值 3. 3869 1. 0018 0. 1678

极限学习机辨识值 3. 2679 0. 9848 0. 1710

优化后极限学习机辨识值 3. 4037 1. 0012 0. 1683

表 3 实验数据辨识结果
Table 3 Identification results of the test data

辨识次数 P0 /MPa S μ

1 3. 0220 0. 9982 0. 5341

2 3. 0443 0. 9994 0. 5655

3 3. 0489 1. 0011 0. 5613

4 3. 0562 0. 9975 0. 5568

图 6 测试曲线辨识结果
Fig． 6 Comparison of the test angular velocity and identified angular
velocity

支臂角速度曲线与测试数据曲线的对比． 从图中可以
看出，辨识出的角速度曲线与真实的角速度曲线比较

吻合，证明辨识出的结果是正确合理的． 为比较极限
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学习机的辨识结果与粒子群算法优化后极限学习机的

辨识结果的精度，根据系统相似度评估及时间序列曲

线相似度计算方法［17］，计算了其相应的辨识结果与测

试数据的相似度． 极限学习机的辨识结果曲线与测试
数据曲线的相似度为 0. 9621，而粒子群算法优化后极
限学习机的辨识结果与测试数据曲线的相似度为

0. 9759，可见粒子群算法优化后极限学习机的辨识结
果与测试数据曲线具有更高的相似度，这也证明了经

粒子群算法优化后的极限学习机的比为经优化的极限

学习机具有更高的辨识精度．

4 结论

( 1) 利用 ＲecurDyn和 Simulink建立了包含多体动
力学、液压、电机与控制系统的弹药传输机械臂联合仿
真模型．
( 2) 对弹药传输机械臂的待辨识参数进行了抽

样，根据抽样结果进行了仿真计算，获得了相应的样本

角速度曲线． 利用函数型数据分析和函数型主成分分
析对样本角速度曲线进行了特征提取，获得了样本角

速度曲线的特征参数，并将提取的特征参数作为极限

学习机的输入，待辨识参数的抽样值作为极限学习机

的输出对极限学习机进行了训练．
( 3) 利用粒子群算法对极限学习机的隐含层节点数、

输入层与隐含层的连接权值以及隐含层节点的阈值进行

了优化，提高了极限学习机的辨识精度和泛化能力．
( 4) 对机械臂的角速度进行了测试，利用粒子群

算法优化后的极限学习机结合仿真数据和测试数据对

弹药传输机械臂的参数进行了辨识． 仿真数据的辨识
结果表明，粒子群算法优化后的极限学习机的辨识精

度和泛化能力能够达到预定要求; 通过对比将测试数

据的辨识结果代入模型中进行仿真得到的支臂角速度

曲线与测试数据曲线，验证了此方法的可行性和有效

性． 同时，将传统的极限学习机与粒子群算法优化的
极限学习机的辨识结果进行了对比，对比结果表明，传

统的极限学习机经粒子群算法优化后，不仅辨识精度

有提高，其泛化能力也有很大程度的提高．
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