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An improved artificial fish swarm algorithm and its application on system identification

with a time-delay system
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School of Mechanical Engineering University of Science and Technology Beijing Beijing 100083 China
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ABSTRACT To remedy the low convergence rate and low optimization accuracy of the artificial fish swarm algorithm ( AFSA) an
improved artificial fish swarm algorithm ( TAFSA) was proposed. In the improved algorithm the artificial fish could adjust the vision
and step and form a balance between the local search and global search by identifying the actual condition. Furthermore when the
artificial fish in the foraging behavior does not find a better position than the current location it steps forward to the optimal artificial
fish by introducing the guide behavior to improved algorithm. The results indicate that the improved algorithm has advantages such as
convergence rate optimization accuracy and anti local extremum value. The improved algorithm was applied to the system identifica—
tion with the time-delay model. This algorithm can obtain a precise mathematical model of the controlled object and acquire great iden—
tification accuracy in the case of external interference.
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Table 1 Reference function

1 Easom X)) = —cos (x;) cos (x,) xexp ( =(a;, —m) 2 =(x, —m) %) 2 -100 100 min = —1
2 Booth SUX) =(x +2x, =7) 2 = (2%, +x, =5)? 2 -10 10 min =0
3 Eggcrate SUX) =x3 +43 +25( sin’x; +sin’x,) 2 -m min =0
2
4 Schaffer X 0.5+ v 3 +3) 0.5 2 ~100 100 min =0
1+0.001( %} +23) *
5 Squmsquares AX) = i in? 10/20 - 100 100 min =0
) =1
6 Rastrigin AX) =Y aF —10cos (2mx;) +10 10/20 -5.125.12 min =0
i=1
2
Table 2 Comparison of two dimensional function optimization results
/s
AFSA -1 -0. 9994 -0.9999 1.2905 x 10 * 6. 6616
Easom IAFSA® -1 -1 -1 3.0019 x 107 1.9708
IAFSA -1 -1 -1 2.9798 x10 7 0. 3558
AFSA 3.8778 x10°* 9.9503 x 107 5.7542 x 1077 2.9950 x 10 ~7 1. 0006
Booth TIAFSA® 5.2530 108 9.8125 x10 77 4.4545 x1077 2.9262 x 1077 0. 6586
IAFSA 1.6877 x10 78 9.9473 x 1077 4.3854 x1077 2.8775 x10 77 0. 5791
AFSA 6.9275 x10°* 1.1218 x10~° 1.1309 x 10 ~° 1.7537 x10 ¢ 3. 6406
Eggcrate TAFSA® 3.9301 x10~° 8.9578 x 107 3.5447 x 1077 2.6372 x1077 1.2168
TAFSA 2.5636 x10~° 9.9677 x1077 4.3027 x1077 3.2425 x 1077 0. 4810
AFSA 2.8652 x10°* 3.4188 x10 73 8.7657 x10 ¢ 8.9713 x10 ¢ 5.5970
Schaffer IAFSA® 1.8510 x10 7® 9.9797 x 1077 5.0035 x 107 2.9768 x 107 0. 5565
IAFSA 2.2049 x 10 ~° 9.6439 x 1077 3.2632 x1077 2.9739 x 107 0. 3259
a 12
2 Easom. Booth. Eggcrate Schaffer
Squmsquares  Rastrigin
. ( PSO) ( GA) 4
50 T a,
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Table 3 Comparison of high dimensional function optimization results
AFSA 1.3713 779. 5365 169. 9517 214. 5429
TAFSA® 1.0381 x10~° 4.4401 x10° 4.6810 x 1077 1.1229 x 10 ~°
10 PSO 5.4564 x 102 6.5316 x 101 1.3417 x10° 9.2349 x 101
GA 1.0114 x10 73 17. 8413 8.1762 x 10 ! 2.7023
IAFSA 5.9888 x 10~ 1.0348 x 10 =4 1. 1867 x 10 =* 2.1531 x10 =%
Squmsquares
AFSA 1. 0067 x 10* 3. 1160 x 10* 2.4219 x 10* 3.9354 x 10°
IAFSA® 3.2940 x 10 ~° 8.4794 x 10 ~° 5.6721 x10~° 9.9086 x 10 ~°
20 PSO 8.7652 x 10* 1.5852 x 10° 5.4685 x10° 3.3500 x 10°
GA 2.7901 803. 4326 125. 1207 199. 2067
TAFSA 1.2689 x 10~ 1.2304 x 10 ~* 1. 6685 x 10 3 2.6689 x 10 ~°
AFSA 21.2983 41.0617 32.8618 4.5161
TAFSA® 5.9701 17. 9095 10. 7261 2.9149
10 PSO 12. 9345 349. 2173 125. 9594 73. 0887
GA 8.0130 x10~* 7.0021 2.1151 1. 6983
TAFSA 0. 9950 10. 9445 3.7311 1.9525
Hastrigin AFSA 102. 0457 133. 2552 120. 2448 8. 1998
TAFSA® 22. 8871 64. 6735 43,3623 7.3832
20 PSO 348. 6820 1225. 4552 674. 0951 197. 1180
GA 4.5570 24. 4199 13. 6161 4.7945
IAFSA 1. 9899 10. 9445 6. 6861 2.1653
4 5
Table 4 Identification of the transfer function Table 5 Identification results of the first order time-delay systems
a, k T .
6(9) 3o e -
5s+1 ags +1 1 3.0001 4. 9994 6. 0002 3.7014
G,(s) _ e 25 2 k e ™ 2 3.0001  4.9988  6.0007 7.1110
3.55" +1. 25 +1 bys™ +b;s+1
3 3.0000  4.9997  6.0010 5.9011
err, n 4 2.9999  5.0009  5.9990 8. 6423
5 3.0000  5.0007  5.9999 1.5363
2.1
(1)
4 G, ( 3)
X =(a, k7).
Gl( 3)
( 60 s 1s) "™
G, (s) 5 5
5
1
1

Fig.1 Unit step response curve of the first order delay system
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Fig. 2

2

lay system

Iterative error curve of unit step response of the first order de—

(2)
G,(s) 0
0.1
6
Table 6 Identification results of white noise for the first order time-delay
systems
a k T
1 2.9900 4. 9006 5.9022 0. 5791
2 2.9731 4. 5426 5.9780 0.5159
3 3.0014 4.9136 6. 1291 0. 5938
4 2.9970 4.7289 6. 0929 0. 5838
5 2.9936 4.7039 6. 1458 0. 5850
5 6
3
15
4
2.2
(1)
4 G,(s)
X, =(by b, k7).
G,( )
( 60 s 1s) "™
G,(s) 5 7

3

Fig.3 Unit step response curve of the first order delay system with

white noise

4

Fig.4 lterative error curve of unit step response of the first order de—

lay system with white noise

Table 7 Identification results of the two order time-delay systems

by

by

/1077
1 2.0001 3.5013 1.2004 2.4993 7.1917
2 2.0000 3.4991 1.1997 2.5004 3.5348
3 2.0000 3.5005 1.2001 2.4990 9.0177
4 2.0000 3.4998 1.2006 2.4998 9. 8710
5 2.0000 3.5006 1.1998 2.5001 5.2533
5
(2)
Gy(s)
0.12
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5

Fig.5 Unit step response curve of the two order delay system

6
Fig.6 lterative error curve of unit step response of the two order de—

lay system

8
Table 8 Identification results of white noise for the two order time-delay
systems
by b, k T
1 2.0012 3.5772 1.1688 2.6208 0. 8260
2 2.0041 3.3528 1.1811 2.6584 0. 8452
3 2.0018 3.3975 1.0953 2.6887 0. 8246
4 1.9949 3.4126 1.1151 2.6280 0. 8456
5 1.9965 4.0692 1.3688 2.1826 0. 8023
7 8
7
8 20

( TAFSA)

7
Fig.7 Unit step response curve of the two order delay system with

white noise

8
Fig.8 lterative error curve of unit step response of the two order de—

lay system with white noise
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