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Effects of cooling velocity on multiaxial fatigue behavior of A319 alloy under circular

loading conditions
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ABSTRACT The effects of cooling velocity on the multiaxial fatigue properties of A319 alloy under circular loading conditions was
studied by using the MTS809 servo-hydraulic testing system and scanning electron microscopy. The results indicate that the solidifica—
tion cooling velocity of 10 °C *s ' leads to decrease in the size of microstructures such as second dendrite arming space Si particle

and void compared. Hysteresis loops with smaller second dendrite arming space show that there is almost no phase angle between strain
and stress along the axial direction. Furthermore the decrease in second dendrite arming space size manifests as a more remarkable

1

additional hardening effect compared to that of the sample with a cooling velocity of 0. 1 °C *s ™. The local regions of crack initiation

are completely different. The cracks in samples solidified at a cooling velocity of 10°C *s ™" initiate and propagate from large Si particu—

" which initiate from pores. It is also found the

lars in contrast to the cracks in samples solidified at a cooling velocity of 0. 1 °C *s~
A319 samples under the two different cooling velocities show initial cyclic hardening followed by cyclic softening in the axial direction
and initial cyclic hardening followed by stable tendency in the shear direction.
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Fig.1 Casting mold with hydrocooling for A319 ’ s
T6 10 Ces™
480 0.15%
7.5h 60C  0.18% S, 1.6 S, |
1h
2
Table 2 Fatigue properties under different equivalent strain amplitudes
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Fig.3 Hysteresis loops of both samples under different fatigue test conditions: (a) S, , S,p multi-axial fatigue;

multi-axial fatigue; (b) S, and

(¢) Sp.; uniaxial fatigue; (d) S;, uniaxial fatigue
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Fig.4 Relationship between stress amplitudes and testing cycles: (a) axial direction; (b) shear direction
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Fig.6 Positions of crack initiation in SEM images of both samples: (a) S;o; (b) S,

1.5 mm.
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