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ABSTRACT In recent years the air quality in China has become a matter of serious concern. Among the available indicators for
evaluating air quality PM2.5 is one of the most important. It comprises a complex mixture of extremely small particles and liquid drop—
lets emitted into the air whose diameters are no more than 2. 5 um. Environments with a high PM2. 5 index are extremely harmful to
human health. Once inhaled these particles can affect the heart and lungs and cause serious health problems. Air pollution is closely
related to meteorological conditions such as wind speed wind direction atmospheric stability temperature and air humidity. With the
development of various machine learning methods deep learning models based on neural networks are increasingly applied in air pollu—
tion research. In this study the temperature humidity wind velocity data at different pressure altitudes from 8 locations around
Beijing and average of PM2. 5 data in Beijing were analyzed and normalized. Multi-dimensional data was ideal for research applications
using machine learning methods. and three neural network models were built including the back propagation ( BP)  convolutional

neural network ( CNN)  and long short-term memory ( LSTM) models and trained them using the meteorological and PM2.5 data.
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The results indicate that the accuracies of the back propagation and convolutional neural network models in predicting the PM2. 5 pollu—
tion level in the next hour is much lower than that of the long shortterm memory model. The PM2. 5 pollution index predicted for the
next hour by the long short4term memory model is very close to the actual value. This result reveals the strong relationship between the
PM2. 5 pollution index of Beijing and the local meteorological conditions. The long short-term memory model is trained using meteoro—
logical data from different pressure altitudes and found it to be more accurate in predicting pollution levels when using nearsurface me—
teorological data than that obtained from multiple altitudes.

KEY WORDS machine learning; PM2. 5; meteorological condition; neural networks; long short+term memory; pollution prediction
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