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ABSTRACT An important part of the iron-and-steel production process converter steelmaking is the most widely used and efficient
method of steelmaking in the world. Under the requirements of “China Manufacturing 2025 ” ensuring intelligent steelmaking impro—
ving smelting production efficiency and reducing production cost are major concerns that should be addressed urgently in converter
steelmaking. Owing to the complex thermodynamic and dynamic reactions in the converter smelting process sublance control and tradi—
tional flue-gas analysis models have limitations that result in low prediction accuracy of the end-point carbon in converter smelting

thereby causing the main technical bottleneck in intelligent steelmaking. Therefore a functional digital twin model of the steelmaking
process based on flue-gas analysis was proposed. First continuously monitored real-time data were obtained by flue gas analysis to ob—
serve the carbon and oxygen reaction state of molten steel in the converter. Then according to various stages of the converter reaction

the functional data analysis method was used to establish the functional prediction models for the early and late stages of blowing. The

: 2018-07-23
(863 ) (2014AA041801-2)



+522- 41 4

greatest advantage of the method is that the model can automatically adjust the coefficient function according to the measured off-gas da—
ta by using a continuous functional curve to fit the complex dynamic reaction process. Therefore the proposed model can accurately
predict not only the normal smelting process but also the decarburization and carbon drawing process for the secondary scraping slag.

An industrial experiment on a 260 t converter was conducted to prove that the functional digital twin model of the converter smelting
process has good selfdearning and self-adaptive ability and is robust to the abnormal smelting state. Furthermore the model can predict
the carbon content of the converter dynamically in the entire process and the end-point carbon content can reach 95% at +0.02%.

Using the predicted value of the carbon content to control the final blowing point through the functional digital twin model can effectively
prevent overblowing or underblowing. More importantly on the premise of guaranteeing the stability of raw material composition tem—
perature weight and other parameters the model is expected to cancel the blown-off sampling step based on sublance. This feature
can reduce the production cost while improving the product quality and production efficiency for a wide range of industrial applications.

KEY WORDS converter steelmaking; digital twin model; off-gas analysis; functional data analysis; end-point carbon control
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Fig.2 Measured and fitted off-gas profile under normal conditions Fig.4 Off-gas profile in two-stage slagging
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Fig.3 Measured and fitted off-gas profile when slopping occurs
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Fig.6 Off-gas profile when slopping occurs after two-stage slagging
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Table 1  Comparison
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AH32 24.222 21.285 0. 425 0. 446
SPHC 22.578 21.521 0. 448 0.463
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SPHC 22.571 21.098 0.367 0.39%4
B 27. 867 25.655 0.355 0. 340
SPHC 20. 924 20. 009 0. 406 0.403
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