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ADHD classification based on a multi-objective support vector machine

DU Hai-peng, SHAO Li-zhen™, ZHANG Dong-hui

Key Laboratory of Knowledge Automation for Industrial Processes of Ministry of Education, School of Automation and Electrical Engineering,
University of Science and Technology Beijing, Beijing 100083, China
X Corresponding author, E-mail: Ishao@ustb.edu.cn

ABSTRACT Attention deficit hyperactivity disorder (ADHD) is one of the most common mental disorders during childhood, which
lasts until adulthood in most cases. In recent years, ADHD classification based on functional magnetic resonance imaging (fMRI) data
has become a research hotspot. Most existing classification algorithms reported in the literature assume that samples are balanced;
however, ADHD data sets are usually imbalanced. Imbalanced data sets can cause the performance degradation of a classifier by
imbalanced learning, which tends to overfocus on the majority class. In this study, we considered an imbalanced neuroimaging
classification problem: classification of ADHD using resting state fMRI. We used the functional connection matrix of fMRI as the
classification feature and proposed a multi-objective data classification scheme based on a support vector machine (SVM) to aid the
diagnosis of ADHD. In this scheme, the imbalanced data classification problem is formulated as an SVM model with three objectives:
maximizing the margin, minimizing the sum of positive errors, and minimizing the sum of negative errors. Accordingly, the positive and
negative sample empirical errors can be separately handled. Then, the model is solved by a multi-objective optimization method, i.e.,
normal boundary intersection method. A set of representative classifiers are computed for selection by decision makers. The proposed
scheme was tested and evaluated on five data sets from the ADHD-200 consortium and compared with traditional classification methods.

Experimental results show that the proposed three-objective SVM classification scheme is better than traditional classification methods
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reported in the literature. It can effectively address the data imbalance problem from the algorithm level. This scheme can be used in the

diagnosis of ADHD as well as other diseases, such as Alzheimer’s and Autism.

KEY WORDS multi-objective optimization; functional magnetic resonance imaging; attention deficit hyperactivity disorder; support

vector machine; imbalance data set
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ADHD K i P F1 % i #L 1 B A 3 2, HOAD
ADHD HJi2 W 200 T B AR i BV g, N,
ADHD 1% W12 Wi FIA 06 T7 2 i 28 B 2 400 1Y)
HEPRWZ —.

VT AR, i e PR IR AR ) N T RE P
AR MR ™ S BOR B 81 T ADHD 1Y 4 B2 i
Hodr, # B & g # 3t IR B 1R (Resting state
functional magnetic resonance imaging, rs-fMRI) 7£ ¥
P 1 B 43 A b R LR R AR, AR
A LA T2 Wr ADHD, i 7] LA 12 Wik i o 24
il I AR A,

WFFEE T3 0 T & FiRp IR 42 I e o2k
FEEHTHRT rs-fMRI /) ADHD 43251, Castellanos
S50 % B fMRI R 2 BE 7% 445 B 7 LU ADHD
B — A% HAFAE . Du ZE V3R T — b ) )
F W 4% B4 7 32 ok %) ADHD #E 47 43 28, % 7 4%
7ok 4 i X 245 1 R S 1 I 2%, O R T IR
¥ () PCA K $2& HUREAIE . Qureshi 55 1158 7 fMRI
1Y 42 JRy 3% 38 18, O ) B T I 19 B 5T 1
P4y 378 30 1 B A Oy TR AR 2 2T L0 2R 2 1 B A
FEAE. Miao F1 Zhang® $2 ) T — Fp & T AU E 1Y
relief 5 125 8 SR AF rs-fMRI H I I8 3 0 B0 2 1
FAAE T4, Riaz S S0 T HES2 BB FUZ AR 8L
i iy LAs 27 ST HEZR, WF 5T ADHD FIIE# Z X # Z
(] D) R He el . 2 TR BB A A 1, & b
B 2 1 >k +7 R ( Synthetic minority oversampling
technique, SMOTE) "' Fl F A= il /DB AE AR

DL b4 3 R 2800 AR R 2 1
iy, SRS |, BT rs-fMRI ) ADHD 405 53
e R) R B B ST . A R RS o3 2R
T3, 33 AN A 2 ST o3 T BON Z2 8O IR A Y
W EIRRAR, P RARVERE T RE. A AP AR Ak
BT ARG Ry W RS s B J2 T 1Y O ik R
JE T Y 5k U B T2 T Y Tk e B SR A R

Ao TR Yl N ST A T R, T R 2 T ) 1k R AR
TR 2o A R AN [ B O R AR 5 ) ACAS R A ] IR
T. 7 ADHD %i#& 7325, SMOTE 773k & H T4b
LNV g N I PR (ED S i U ORI € iR NEA
BORER PEAT B AL I SR AL /R R RE, 3 2801 E 7 #r il
SRR AR 0 T BB T B0 AR R B AR

% BB 4y A n) 8 Z2 H AR M BT, Shao 451
T —FFHF ADHD 20 B3 H AR 280576, (1
S TR IR B IR B AR b R,
ARSCHE TR T SVM £ HErr2 T £k
fif T ADHD %54l A - (0] 81, 3% 7 2238 i 2 H dx
A B AT 5T 40 1 AE BORE AR, DT T A B ik
22 T A 550 b Ak B SR AS ST ]

1 FIEAIE

AHIEFE A A% BodiE 4 0k H T ADHD-200 35
%% (http://fcon_1000.projects.nitrc.org/) . K45 4E 32
BN = Ak S AREL, 4992 Kennedy Krieger Institute
(KKI), New York University Medical Center(NYU)
F1 Peking University( Peking) . SZ50 R T 1A%
i 4, 43 51 A KKI, NYU HI Peking-1, Peking-2 #ll
Peking-joint, H: ' Peking-joint H Peking-1, Peking-
2 il Peking-3 = MEIEEH L. BHRFr& R 5N
1E & A B (Normal control, NC) #l ADHD (£ % . ¢
5 i FH 20 9 A B0 SE R TR R a3k 1 PR,

# 1 ADHD-200 ¥Rk

Table 1 Description of ADHD-200 data sets

Total number of Number of ADHD  Number of NC
Data set

subjects subjects subjects
KKI 83 22 61
NYU 216 118 98
Peking-1 85 24 61
Peking-2 67 35 32
Peking-joint 194 78 116
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Fig.2 ADHD classification scheme based on multi-objective SVM
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Fig.3 Non-dominated points obtained using the NBI method
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F2 YIHEARIESE ERMERET
Table 2 Evaluation of the training/cross-validation data set
Classifier 1 2 3 4 5 6
Accuracy 0.6600/0.6842 0.6400/0.6842 0.6600/0.7368 0.6800/0.3842 0.6600/0.7368 0.6000/0.6316
G-means 0.6547/0.5311 0.6607/0.6202 0.6929/0.7161 0.7237/0.6794 0.7182/0.7596 0.6299/0.5883
Classefier 7 8 9 10 11
Accuracy 0.6000/0.6842 0.6200/0.6842 0.6000/0.6842 0.6200/0.6842 0.5800/0.5789
G-means 0.6299/0.6794 0.6726/0.6794 0.6547/0.7161 0.6841/0.7161 0.6268/0.5991
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XA, Hodr, LiSVM Al L,SVM i 4 #8 2 %1
C=0.8; RF H i AN H0k 50, ARARB Y B K IR
5; ELM P RRUZ T S A 80k 300 SL88iE1T T IR,
AL T HABIEE T TIRTFEE R, k3
Fras . 3 R RS Bl 4 i e 0 T B DA R e e 1)
g-means {853 LB AT R4 . % b g 5=
B, A SCHE 0 = A B AR J7 276 T 5 ADHD %%
P 4 LRI T HAXT L k.

ik ADHD £l 441, A SCUL e T University of
California Irvine( UCI) Machine Learning Repository
- MINIST #5040 48 o DR B2 10 1Y O ik i A 20k
MNIST ¥4 864 10 28, F AT HFEAT T R AE I BE
HLIEBUARZE N “ 97 1 50 N FEAAE Ry IEFEA, HoAlh
KB R AR & RN, 585 Rk 3
TN, 45 JREFWIAS SCHR M 5 7 — e 8 AN - 1 £
it AR A B A B o R ROR.

F3  ARIER IR /g-means {H

Table 3 Average accuracy/g-means value for different methods

Data set L,SVM L,SVM B-SVM RF ELM T-SVM
KKI 0.635/0.421 0.634/0.515 0.732/0.527 0.725/0.530 0.696/0.622 0.753/0.606
NYU 0.545/0.543 0.556/0.542 0.643/0.624 0.608/0.610 0.588/0.594 0.703/0.698
Peking-1 0.725/0.683 0.714/0.664 0.801/0.677 0.770/0.688 0.677/0.647 0.813/0.711
Peking-2 0.636/0.637 0.665/0.683 0.807/0.776 0.635/0.649 0.564/0.601 0.845/0.851
Peking-joint 0.630/0.615 0.624/0.611 0.742/0.764 0.665/0.686 0.625/0.613 0.751/0.743
MNIST 0.977/0.783 0.978/0.797 0.979/0.800 0.975/0.790 0.969/0.00 0.984/0.849
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