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ABSTRACT The operation of cranes and other large machinery threatens the safety of transmission lines. In order to solve this
problem in the transmission scenario, the research from the aspects of data enhancement, network structure and the hyperparameters of
the algorithm were performed. And a new end-to-end transmission line threat detection method based on TATLNet were proposed in this
paper, which included the suspicious areas generation network VRGNet and threat discrimination network VTCNet. VRGNet and
VTCNet share part of the convolution network for feature sharing and we used the model compression to compress the model volume
and improved the detection efficiency. The method can realize accurate detection of large-scale machinery invading in the transmission
scene from the perspective of computer vision and system engineering. To mend the insufficient training data, the data set was expanded
by a combination of various data enhancement techniques. The sufficient experiments were carried out to explore the multiple

hyperparameters of this method, and its optimal configuration was studied by synthesizing detection accuracy and inference speed. The
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research results are sufficient. With increase in the number of grids, the accuracy and recall first increase and then decrease, whereas, the

detection efficiency decreases rapidly with increase in the number of grids. Considering the detection accuracy and reasoning speed, 9 x

9 is the optimal division strategy. With the increase in the input image resolution, the detection accuracy increases steadily and detection

efficiency decreases gradually. To balance the detection accuracy and inference efficiency, 480 x 480 is selected as the final image input

resolution. Experimental results and field deployment demonstrate that compared with other lightweight object detection algorithms, this

method has better accuracy and efficiency in large-scale machinery invasion detection such as cranes in transmission fields, and meets

the demands of practical applications.

KEY WORDS deep learning; threat detection; feature sharing; transmission scene; lightweight network
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Table 1 Different strategies of grid cells partitioning

Grids Precision/% Recall/% Efficiency/ms
2x2 72.23 68.49 33.61
3x3 84.80 71.99 35.85
4x4 89.60 79.59 36.48
5%5 84.37 83.87 40.37
6x6 88.48 86.90 45.62
8x8 92.62 90.14 47.66
9x9 95.19 92.40 51.63
10x10 93.28 95.15 67.21
12x12 81.14 84.36 8.29
14x14 75.61 84.49 7.29
15x15 75.11 86.30 6.05
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Table 2 Effect of data enhancement %0
Data enhancement methods Precision Recall
Original images 78.19 71.52
Traditional methods 85.73 81.35
GAN 93.62 90.55
GAN-+traditional methos 95.19 92.40
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Table 3 Comparison of different image scales

Image scales Precision/% Recall/% Efficiency/ms
240%240 64.71 59.32 30.75
320%320 68.55 64.08 39.65
416x416 80.24 81.46 47.39
480%480 95.19 92.40 51.63
640x640 92.10 95.14 185.19
960x960 95.14 95.72 486.49
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Table 4 Comparison with other methods

Methods Precision/% Recall/% Efficiency/ms
TATLNet 94.68 92.40 51.63
MobileNet 88.35 82.47 67.48
ShuffleNet 83.65 84.91 58.78
Uncompressed TATLNet 95.19 93.15 253.64
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Fig.6 Detection result in field deployment
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Table 5 Detection statistics in field deployment

Alarms Actual number of intrusions

Correct alarms

Precision/% Recall/% Efficiency/ms

79 76 74

93.67 97.37 96.10
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