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摘    要    在输电场景中，吊车等大型机械的运作会威胁到输电线路的安全.  针对此问题，从训练数据、网络结构和算法超参

数的角度进行研究，设计了一种新的端到端的输电线路威胁检测网络结构 TATLNet，其中包括可疑区域生成网络 VRGNet和

威胁判别网络 VTCNet，VRGNet与 VTCNet共享部分卷积网络以实现特征共享，并利用模型压缩的方式压缩模型体积，提升

检测效率，从计算机视觉和系统工程的角度对入侵输电场景的大型机械进行精确预警.  针对训练数据偏少的问题，利用多种

数据增强技术相结合的方式对数据集进行扩充.  通过充分的试验对本方法的多个超参数进行探究，综合检测准确率和推理

速度来研究其最优配置.  研究结果表明，随着网格数目的增加，准确率也随之增加，而召回率有先增加后降低的趋势，检测效

率则随着网格的增加迅速降低.  综合检测准确率与推理速度，确定 9×9为最优网格划分方案；随着输入图像尺寸的增加，检

测准确率稳步上升而检测效率逐渐下降，综合检测准确率和效率，选择 480×480像素作为最终的图像输入尺寸.  输入实验以

及现场部署表明，相对于其他的轻量级目标检测算法，该方法对输电现场入侵的吊车等大型机械的检测具有更优秀的准确性

和效率，满足实际应用的需要.
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ABSTRACT    The  operation  of  cranes  and  other  large  machinery  threatens  the  safety  of  transmission  lines.  In  order  to  solve  this

problem in the transmission scenario, the research from the aspects of data enhancement, network structure and the hyperparameters of

the algorithm were performed. And a new end-to-end transmission line threat detection method based on TATLNet were proposed in this

paper,  which  included  the  suspicious  areas  generation  network  VRGNet  and  threat  discrimination  network  VTCNet.  VRGNet  and

VTCNet share part of the convolution network for feature sharing and we used the model compression to compress the model volume

and improved the detection efficiency. The method can realize accurate detection of large-scale machinery invading in the transmission

scene from the perspective of computer vision and system engineering. To mend the insufficient training data, the data set was expanded

by  a  combination  of  various  data  enhancement  techniques.  The  sufficient  experiments  were  carried  out  to  explore  the  multiple

hyperparameters of this method, and its optimal configuration was studied by synthesizing detection accuracy and inference speed. The 
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research results are sufficient. With increase in the number of grids, the accuracy and recall first increase and then decrease, whereas, the

detection efficiency decreases rapidly with increase in the number of grids. Considering the detection accuracy and reasoning speed, 9 ×

9 is the optimal division strategy. With the increase in the input image resolution, the detection accuracy increases steadily and detection

efficiency decreases gradually. To balance the detection accuracy and inference efficiency, 480 × 480 is selected as the final image input

resolution. Experimental results and field deployment demonstrate that compared with other lightweight object detection algorithms, this

method has better accuracy and efficiency in large-scale machinery invasion detection such as cranes in transmission fields, and meets

the demands of practical applications.

KEY WORDS    deep learning；threat detection；feature sharing；transmission scene；lightweight network

输电线路的安全对国家的发展至关重要，由

于吊车等大型机械运作时的高度跟输电线路的高

度比较接近甚至更高，当这些设备在输电线附近

进行作业时会对输电线路的安全造成威胁.  因此，

设计一种能够对输电线路威胁进行自动报警的方

法显得十分必要[1].
国家电网在输电塔上配备了图像抓拍设备，

但目前其供电方式为太阳能充电，能够提供的功

率较小并且难以支撑监控设备的长时间运行 .  因
此，对输电线路进行全天候监控并利用常规深度

学习目标检测的方式来进行报警变得不再可行 .
针对以上问题，本文提出了一种基于 TATLNet的
输电线路威胁报警方法，该方法通过红外传感器

来对过往的大型设备进行监控[2]，当检测到大型机

械时再唤醒系统加以分析以减少能耗.  利用本文

提出的一种新的输电线路威胁检测网络 TATLNet，
并用通道剪枝的策略来对模型进行压缩 [3−5]，提高

检测速度，使之可以在轻量级计算平台上运行.  同
时，由于可以采集到的吊车、起重机等大型机械入

侵图像较少，采用传统图像几何变换与 GAN[6]

（Generative adversarial network，对抗生成网络）相

结合的方式来对数据集进行数据增强.
该方法的贡献主要有以下几点：

（1）解决了如何在无人值守的情况下对入侵

输电场地的吊车等大型机械进行报警的难题；

（2）针对低能耗计算平台的限制以及入侵输

电场地机械在图像中的特点，设计了一种新的端

到端输电线路威胁检测网络 TATLNet；
（3）提出了目标检测的一个新思路，即将大多

数计算用于提出更精确的候选区域，并针对具有

较高准确率的候选区域设计较小的分类网络.

1    相关研究

1.1    输电线路监控

目前对输电线路威胁的监控大多通过采集监

控图像，并利用图像匹配或者深度学习方法对图

像进行分析.  文献 [7]中，摄像头拍摄监控区域图

像，通过对大型运动目标进行实时匹配，来确定运

动目标与输电线路的位置和距离.  文献 [8]中，应

用红外滤片式自动切换网络摄像机，对监控区域

进行 24 h全天候监控，并将图像上传至服务器，在

服务器中应用混合高斯背景建模实现对大型机械

入侵的定向识别.
1.2    深度学习

自从Hinton等[9] 在 2012年提出深度学习的概念，

深度学习便逐渐取代了传统的检测算法而成为目

标检测领域的主流方法.  近年来深度学习的发展

为输电线路威胁报警提供了新的方案，卷积神经

网络对于目标的几何变换、光照等因素适应性较

强，有效克服了目标外观的多样性带来的识别阻

力.  它可以根据输入到网络的数据而自动生成相

应的特征描述，具有较高的灵活性和普适性[10−13].
目前图像中的目标检测主要分为单步检测方

法和两步检测方法两种 .  其中，单步检测方法包

括 SSD（Single shot multibox detector）、YOLO（You
only look once）和 CornerNet（基于角点的目标检测

神经网络）等 [14−16]；两步检测方法包括如 R-CNN
（Region-CNN）、Fast R-CNN、Faster R-CNN和Mask
R-CNN等[17−20].  单步检测方法直接在图像上经过计

算生成检测结果；两步检测方法先在图像上提取

候选区域，再基于候选区域进行特征提取，然后在

图像中进行预测.  相对来说单步检测方法速度快，

准确率略低；而两步检测方法准确率高，速度略

慢.  但是因为输电塔上的设备由太阳能电池供电，

摄像头无法全天开启并且难以支撑大型计算平台

的运行，因此上述传统目标检测方法在此场景下

并不适用.  而最近新提出的 YOLO-Lite、MobileNet
和 ShuffleNet等轻型网络结构 [21−23]，尽管在速度和

体积上有了极大的提升，但因此产生的准确率损

失使得其难以在此场景下满足检测要求.
综上所述，将深度学习用于输电场景的威胁

报警是当前的一个研究趋势.  目前常规的深度学
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习方法已经取得了一定的效果，但是在检测准确

率和效率方面仍有一定的提升空间，并且在限定

能耗的条件下也不再适用.  因此，针对输电场景大

型机械入侵的偶然性和图像特征，需要提出一整

套新的输电场景大型机械入侵检测方法.

2    设计与实现

2.1    架构设计

基于 TATLNet的输电场景下的威胁报警方法

通过开启或者关闭红外传感器控制系统来减少运

行能耗，当红外传感器探测到大型机械的运行时

会唤醒摄像头并加载神经网络，在对摄像头采集

的视频解码后将图像传输至输电线路威胁检测

网络 TATLNet.   TATLNet分为可疑区域生成网络

VRGNet（Vehicle regions generation network）和威胁

判 别 网 络 VTCNet（ Vehicle  threat  classification
network）.   VRGNet提取图像中可能存在目标的区

域，VTCNet实现与 VRGNet的特征共享并对候选

区域进行进一步的分类.  检测结果通过无线传输

发送至服务器，在服务器上实现对大型机械入侵

的报警，流程图如图 1所示.

2.2    数据增强

由于可以获得的数据集样本较少，采用多种

数据增强方式对数据集进行扩充，包括传统的几

何变换数据增强和 GAN生成新图像的数据增强

方法 .  在用 GAN对数据集进行扩充时，采用深度

卷积对抗生成网络（Deep convolutional  generative
adversarial  network，DCGAN）来生成新的图像 [24].
考虑计算机显存的限制，在训练时统一将图像在

960×640像素的尺寸上进行训练，每 16张图像为

一个批次，训练过程中生成的图像样本如图 2（a）
所示.  对于传统的图像几何变换方法，采用随机裁

剪、水平翻转、图像倾斜、添加噪声和图像缩放的

方式对数据集进行了扩充，图 2（b）为添加椒盐噪

声的图像.

2.3    TATLNet设计

针对计算平台低能耗的需求以及入侵输电

场地的机械在图像中的特点，设计了一种端到

端的输电线路威胁检测网络 TATLNet，分别设计

可 疑 区 域 生 成 网 络 VRGNet和 吊 车 分 类 网 络

VTCNet两部分，并采用模型压缩的方式来对模型

进行压缩以减少非必要参数数量、缩小模型体

积、提高运算速度 .  其中，VRGNet负责输电场景

下吊车的粗略检测，VTCNet负责对 VRGNet的检

测结果进行进一步判断（可以将 VRGNet视为一个

更为精确的 RPN[25]），VTCNet与 VRGNet共享部

分卷积层以减少检测的计算量，TATLNet结构图

如图 3所示.
2.3.1    VRGNet结构设计

VRGNet借鉴了 YOLO边框回归计算的思想，

并对其主体网络做了一定的精简以尽可能缩小模

型的体积，网络结构如图 4所示，其中 Conv为卷

积层（Convolutional layer），同时包含一个最大池化

层（Max pooling layer）和 relu激活层（Rectified linear
unit layer），Fc为全连接层（Fully connection layer） .
首先将输入图像缩放至统一尺寸后在图像中划分

出多个网格，如果目标中心点落在某个网格中，则

该网格就负责对该目标的检测.  由于大型机械在

运作时不会十分密集，并且该网络的主要任务为

 

Infared sensor

Waking camera up

Loading model

Video decoding

Detection result

Control server

TLTANet

VRGNet VTCNet

图 1    系统流程图

Fig.1    System flow chart
 

 

(a) (b)

图 2    数据增强图像. （a） GAN生成图像；（b）椒盐噪声图像

Fig.2      Images from data enhancement:  (a)image generated from GAN;
(b) image with salt and pepper noise
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检测大型机械是否存在，对目标的个数没有很高

的要求，因此每个网格只预测至多一个目标出现

的坐标和概率.  由于需要检测的目标只有吊车这

一类，所以 VRGNet并不需要单独的分类器，因而

舍弃了目标类别预测的分支，采用置信度来衡量

边框中存在目标的概率.  根据对数据集中吊车尺

寸的统计，可以发现图像中目标的尺寸大小没有

大的波动，因此舍弃了特征金字塔结构 [14] 来减小

计算量.  经过实验，将图像划分为 9×9的网格时模

型准确率最高.
2.3.2    VTCNet结构设计

对于由 VRGNet经过回归计算得到的可疑区

域坐标，将其映射到 VRGNet得到的特征图上.  由
此 VTCNet与 VRGNet实现了部分特征共享，所以

VTCNet对候选区域图像的判别不必从原图开始

对候选区域进行特征提取，因此 VTCNet层数不必

太多，由此可以大幅度减少由图像特征提取带来

的计算量 .  如图 5所示，VTCNet根据区域坐标在

特征图上得到候选区域，通过 RoIPooling以及双线

性插值将候选区域缩放至统一尺寸，经过两个卷

积层后通过一个全连接层生成固定长度的特征向

量，该向量通过 Softmax算法实现对候选区域的

判别.

2.3.3    损失函数设计

由于 TATLNet只需要检测一类目标而不用进

行多类别分类，所以最终的分类损失函数只需要

判断单类别的置信度，目标置信度 Lconf 采用交叉

熵损失函数，具体如公式（1）所示.

Lconf =

S 2∑
i=0

[
CilnC∗i + (1−Ci) ln

(
1−C∗i

)]
（1）

其中，S2 表示网格单元的总数，Ci 表示第 i 个网格

目标检测器所产生的预测结果的置信度，C*
i 表示

预测目标框与真实目标之间的交并比.  目标坐标

的损失函数 Lloc 如公式（2）所示，其中 pro代表所

有目标，(xi, yi)表示第 i 个网格所产生的预测结果

的中心点坐标，(x*i, y*i)为真实的中心点坐标.  相应

地，(wi, hi)和 (w*
i, h*

i)分别代表预测目标和真实目

标的宽、高.
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Lloc =
∑
i∈pro

[
xi ln x∗i + (1− xi) ln(1− x∗i )+ yi lny∗i +

(1− yi) ln(1− y∗i )+
√

wi ln
√

w∗i +
(
1− √wi

)
ln
(
1−
√

w∗i

)
+√

hi ln
√

h∗i +
(
1−
√

hi
)
ln
(
1−
√

h∗i

) ]
n

（2）

结合 TATLNet的结构图，如公式（ 3）所示，

TATLNet的损失函数 L 可以设计为对置信度损失

和坐标损失的加权相加，其中 α 为加权系数.
L = αLconf + (1−α) Lloc （3）

2.3.4    模型压缩

通过通道剪枝的方式来对模型进行压缩，对

已经训练好的模型，选择出相对不重要的通道，将

这些通道删除，然后构造新的模型图，经过重新训

练，恢复原先模型的准确率，消除由于模型压缩带

来的准确率损失.
对于每一个通道上的卷积核，首先计算出其

Frobenius范数 .   然后将其二值化，即如果计算出

的 Frobenius范数大于 0则令其为 1，如果等于 0则

保持不变.  将通道上的这一指标累加起来，以此找

出神经网络各层中的冗余通道，实现对神经网络

作用较小的分支的剪枝，获得体积更小的模型图 .
通过剪枝获得的模型，利用训练集进行重新训练，

以弥补由于剪枝带来的准确率损失，在不损失模

型准确率的基础上实现对深度学习模型的体积压

缩和速度提升.

3    实验与应用分析

为了测试 TATLNet的各项性能指标，在英伟

达轻量级计算平台  NVIDIA Tegra X2 上进行了各

项实验，算法的性能以准确率（Precision）、召回率

（Recall）和检测效率（Efficiency）为指标：

Precision =
TP

TP+FP
（4）

Recall =
TP

TP+FN
（5）

Efficiency =
Time

Number
（6）

其中，TP为测试集检测对的目标数；FP为漏检数；

FN为误检数；Time为算法在测试集进行推理上所

用时间总和，ms；Number为测试集样本总数.
3.1    VRGNet网格划分策略对比

考虑现场监控场景下目标在监控图像中的比

例对检测结果的影响，为了选取合适的 VRGNet网
格单元划分比例，对不同尺度网格单元下的检测

模型进行测试，训练数据和测试数据均采用自制

的吊车图像数据集，测试结果如表 1所示.  可以看

出，随着网格数目的增加，准确率也随之增加，而

召回率有先增加后降低的趋势，检测效率则随着

网格的增加迅速降低 .   综合准确率与检测效率，

9×9为最优网格划分方案.

3.2    数据增强

为了测试该方法所采用的数据增强技术对准

确率的影响，对无数据增强、传统的图像几何变

换、GAN以及 GAN与图形变换相结合的方式进

行了对照实验，其中原始图像 500张，传统的图像

几何变换生成新的图像 1500张，GAN生成新图像

1500张.  实验结果表 2所示，可以看出，GAN与传

统图像几何变换相结合的方式可以极大地提高模

型的准确率.

3.3    不同输入图像尺寸比较

一般而言，输入图像的尺寸越高，神经网络检

测的准确率越高，与此同时会伴随着推理时间的

增加.  为了在模型准确率和推理速度之间达到平

衡，对输入图像的不同尺寸进行了测试，测试结果

 

表 1    VRGNet中网格划分对检测结果的影响

Table 1    Different strategies of grid cells partitioning

Grids Precision/% Recall/% Efficiency/ms

2×2 72.23 68.49 33.61

3×3 84.80 71.99 35.85

4×4 89.60 79.59 36.48

5×5 84.37 83.87 40.37

6×6 88.48 86.90 45.62

8×8 92.62 90.14 47.66

9×9 95.19 92.40 51.63

10×10 93.28 95.15 67.21

12×12 81.14 84.36 8.29

14×14 75.61 84.49 7.29

15×15 75.11 86.30 6.05

 

表 2    数据增强效果

Table 2    Effect of data enhancement %

Data enhancement methods Precision Recall

Original images 78.19 71.52

Traditional methods 85.73 81.35

GAN 93.62 90.55

GAN+traditional methos 95.19 92.40
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表 3所示.  根据实际场景的需要，综合检测准确率

和效率，选择 480×480像素作为最终的图像输入

尺寸.

3.4    与其他轻量级目标检测方法的比较

为了测试 TATLNet的性能，将其与未经压缩

的 TATLNet、MobileNet和 ShuffleNet进行了对比

实验，实验结果如表 4所示 .  可以看出，经过压缩

以后的 TATLNet在准确率损失可控的情况下实现

了检测速度的大幅提升.  跟其他轻量级目标检测

算法相比，无论是检测准确率还是检测效率，压缩

后的 TATLNet都要更胜一筹.

3.5    现场部署分析

为了测试方法性能，在宁夏省银川市进行了

现场部署测试.  现场使用的摄像机为 HIKVISION
DS-2CD3T25D-I5，安装在 50个输电塔 35～40 m的

高度，采集到的图像尺寸为 1920×1080像素，计算

平台为 NVIDIA Tegra X2，生成的识别结果示例如

图 6所示，在一个月中的报警数据如表 5所示.
从中可以看出，该方法可以有效地检测出摄

像头监控范围内入侵的吊车等大型机械，并且对

于距离较远的目标也具有较高的准确性.

4    结论与展望

针对输电场景中的大型机械检测问题，本文

以一种新的输电线路威胁检测网络 TATLNet为主

体提出了一种基于深度学习的输电线路威胁报警

方法.  通过一系列实验证明了 TATLNet在对大型

入侵机械上的优越性，并测试了不同的检测策略

及超参数对检测准确率和效率的影响，实现了输

电场景下大型机械入侵检测的优化研究.  主要结

论为：

（1）以传统几何变换与 GAN相结合的方式进

行数据增强，在此情境下可以获得最高的准确率

增益.
（2）采用模型压缩策略可以在不大量损失准

确率的前提下实现检测速度的大幅提升.
（3）以准确率、召回率和检测效率作为评价指

标，对网格划分策略以及输入图像尺寸进行比较，

在将图片划分为 9×9时各项指标达到最优，图像

输入尺寸在 480×480像素时准确率和效率达到最

佳平衡.
（4）通过跟其他检测方法的对比实验以及现

场部署结果表明，该方法在准确率和效率上都要

优于已有算法，具有较强的可用性、实时性和健

壮性.
在实际应用中发现了新的业务优化需求，由

于该方法检测图像中的所有大型机械并发出提

 

表 3    不同输入图像尺寸的比较

Table 3    Comparison of different image scales

Image scales Precision/% Recall/% Efficiency/ms

240×240 64.71 59.32 30.75

320×320 68.55 64.08 39.65

416×416 80.24 81.46 47.39

480×480 95.19 92.40 51.63

640×640 92.10 95.14 185.19

960×960 95.14 95.72 486.49

 

表 4    与其他方法的比较

Table 4    Comparison with other methods

Methods Precision/% Recall/% Efficiency/ms

TATLNet 94.68 92.40 51.63

MobileNet 88.35 82.47 67.48

ShuffleNet 83.65 84.91 58.78

Uncompressed TATLNet 95.19 93.15 253.64

表 5    现场部署检测统计

Table 5    Detection statistics in field deployment

Alarms Actual number of intrusions Correct alarms Precision/% Recall/% Efficiency/ms

79 76 74 93.67 97.37 96.10

 

图 6    实地部署检测效果

Fig.6    Detection result in field deployment
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示，会产生一定的误报警.  在后续的研究中将会对

系统进行进一步延伸，实现大型机械与输电线路

相对距离的检测，从而消除大型机械在输电线路

威胁距离以外时产生的报警.
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