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Position domain control technology for six-joint robots
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ABSTRACT In the context of the rapid development of intelligent manufacturing, high-precision motion control of industrial robots
has attracted increasing research attention. High-speed and high-precision motion control is a development trend associated with the
current industrial robots. Industrial transformation and upgradation can be accelerated only via the independent research and
development of robot core technologies, including robot high-precision control systems, ensuring the transition of the manufacturing
industry in China toward intelligent and digital development. Currently, the contour tracking error associated with majority of the
multiaxes CNC machine tools and multijoint industrial robots is a common problem. A good tracking performance can be achieved in
time with respect to each joint axis when the space trajectory of the serial multijoint industrial robot changes under multiaxes linkage.
The ideal contour trajectory cannot be fully ensured because of the mechanical and electrical hysteresis effects. Therefore, the
synchronization of the motion of each servo axis in the geometric space is very important. In this paper, the existing kinematics and
dynamics of industrial robots were combined with the traditional PID control theory for studying position domain control algorithm of
the six-joint robot to resolve the problem of low accuracy associated with the robot end profile, which can be attributed to the lag
between the motion instruction and the actual position. The algorithm uses the method of real-time establishment of the master—slave

motion relation for controlling the spatial contour trajectory of the robot. It further transforms the synchronization control method of each
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servo joint in the time domain into the master—slave follow control method of each servo joint in the position domain. While realizing

synchronization control in the position domain, PD control based on position domain was introduced to reduce the following error of the

master—slave following control, improving the overall accuracy of the contour motion of the robot end. The method proposed in this

paper has been tested on the Linux CNC numerical control system with a company’s HSR-JR605 robot, indicating that the position of

the domain control method employed positively affects the accuracy of six articulated robot space trajectory.

KEY WORDS contour tracking; six-joint robot; position domain control; PID control; LinuxCNC
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