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Particle flight behavior in hypersonic flame spraying
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ABSTRACT High velocity oxygen fuel (HVOF) coatings have high bonding strengths and compactness, which can improve the wear,
corrosion, and fatigue resistance of an underlying matrix. These coatings are widely used in chemical industries, metallurgy, aerospace,
and other fields. Here, we studied hypersonic flame spraying through simulating flame flow fields and particle flight processes using the
computational fluid dynamics software Fluent. The HVOF system uses oxygen as a combustion-supporting gas and kerosene as fuel. The
temperature, velocity, and pressure distributions of the flame flow in a spray gun before adding particles were studied. The dynamic
flight behavior of spray particles was calculated using a discrete phase model, and the effects of particle size, injection velocity, and
sphericity on particle trajectory, velocity, and temperature were investigated. The optimal particle size range was 30—50 pm. Particles
that were too large collided with the inner walls of the spray gun, hindering the combination of the particles and matrix. Particles that
were too small were liquid during flight, and readily reacted with oxygen, leading to a reduction in the amorphous content of the
prepared coatings. In the optimal size range, particles were uniformly distributed in the center of the flame flow, and the particles were in
a molten state, ideal for forming coatings with higher bonding strengths. A systematic study of injection velocities on spray particle
dynamics, determined the optimal injection velocity for small, medium, and large particles as 10—15, 5-10, and 1-5 m-s”', respectively.
Compared with spherical particles, nonspherical particles had higher drag coefficients, greater acceleration in the flow field of the flame,

and gained more kinetic energy and less heat during flight.
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Table 1 Geometric parameters of a spray gun

Geometric parameter Length/ mm Diameter/ mm
Combustion chamber 92.5 37.8
Nozzle 37.5 7.9
Barrel 111.1 11
Outer flow field 400 220
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Table 2 Physical properties of iron-based amorphous granular materials
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Table 3 Optimum injection velocities for different particle size ranges

Particle diameter/ pm Injection speed/ (m's ™)

5-20 10-15
30-50 5-10
60-70 1-5

R4 AFBREERRL TR
Table 4 Particle shapes under different shape factors (SF)

Shape factor Shape
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Fig.15 Flight trajectories of particles with different shape factors
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