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基于多尺度曲面的飞机蒙皮凹坑损伤检测算法

侯谨毅，谢    长，李海丰✉

中国民航大学计算机科学与技术学院，天津 300300

✉通信作者， E-mail:lihf_cauc@126.com

摘    要    针对飞机蒙皮凹坑损伤噪声干扰强、检测时间久，机身表面不平整，且在二维图像中缺乏视觉信息、难以进行自动

检测的问题，设计了一种基于多尺度曲面模型的飞机蒙皮凹坑损伤自动检测算法. 首先，通过无人车、升降杆和深度相机搭

建自动化采集平台，用来获得飞机蒙皮点云数据；然后，基于半径滤波、体素滤波、最小移动二乘法算法得到预处理数据；最

后，在此基础上，基于多尺度区域划分、随机抽样一致算法和表面特征聚类进行损伤检测，得到最终的损伤结果. 在损伤数据

集上进行测试，实验结果表明：本文提出的算法在准确率、召回率、F值以及平均检测时间 4个指标上均有明显提升，其均值

分别为 92.86%、86.67%、89.92% 和 6 s，损伤检测结果优于现有的几种点云损伤检测算法，本文提出的算法实现了在飞机蒙皮

场景中自动检测凹坑损伤的目标.
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Aircraft skin pit damage detection algorithm based on multiscale surfaces
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ABSTRACT    To  address  the  problems  of  strong  noise  interference,  long  detection  times,  uneven  fuselage  surfaces,  lack  of  visual

information  in  two-dimensional  images,  and  difficulty  in  automatic  detection,  an  automatic  detection  algorithm  for  aircraft  skin  pit

damage  based  on  a  multiscale  surface  model  was  designed.  First,  an  automatic  acquisition  platform system was  constructed  using  an

unmanned  vehicle,  a  lifting  pole,  and  a  depth  camera.  The  point-cloud  data  of  the  aircraft  skin  was  obtained  using  this  acquisition

platform system. The point-cloud data were then preprocessed using the radius filter algorithm, voxel grid filter algorithm, and moving

least squares algorithm. Then, the preprocessed point-cloud data were divided into multiscale regions and split into multiple local skin

mesh regions to obtain multiple local grid area data.  For each local grid region data,  the surface models of each local grid region and

regional spatial adjacency were obtained by constructing and optimizing the estimation of the local quadric surface based on the random

sampling  consensus  algorithm.  The  spatial  adjacency,  surface  model,  and  its  index  together  form  the  region  tree.  The  local  surface

models at different scales were aggregated by storing information and normal vector angles in the region tree to identify the damaged and

nondamaged regions. Finally, surface features, such as curvature and normal vector, were used to cluster the pit points in the damaged

area,  and the  pit  point-cloud data  were  aggregated to  obtain  the  final  pit  damage results.  The proposed algorithm was compared with

existing traditional algorithms, such as the point-cloud block method and the point feature region growth method based on normal vector

and curvature. Experimental results showed that the accuracy, recall, and F-value of the point-cloud block method were 4.00%, 20.00%,

and 6.67%, respectively, with an average detection time of 20 s. For the point feature region growth method based on normal vector and

curvature, the accuracy, recall, and F-value were 30.77%, 26.67%, and 28.79%, respectively, with an average detection time of 25 s. The 
收稿日期: 2023−11−21
基金项目: 国家自然科学基金资助项目（62373365）；中央高校基本科研业务费专项资助项目（3122022PY13，3122021051）

工程科学学报，第 46 卷，第 12 期：2279−2288，2024 年 12 月

Chinese Journal of Engineering, Vol. 46, No. 12: 2279−2288, December 2024

https://doi.org/10.13374/j.issn2095-9389.2023.11.21.001; http://cje.ustb.edu.cn

mailto:lihf_cauc@126.com
mailto:lihf_cauc@126.com
https://doi.org/10.13374/j.issn2095-9389.2023.11.21.001
https://doi.org/10.13374/j.issn2095-9389.2023.11.21.001
https://doi.org/10.13374/j.issn2095-9389.2023.11.21.001
http://cje.ustb.edu.cn


accuracy, recall,  F-value, and average detection time were significantly improved, with mean values of 92.86%,  86.67%,  89.92%,  and

6  s,  respectively.  Additionally,  the  detection  results  of  the  three  algorithms  on  the  aircraft  skin  engine,  fuselage,  and  wing  were

compared,  and  the  influence  of  curvature  in  different  regions  on  the  algorithm  was  analyzed.  The  detection  results  of  the  proposed

algorithm  were  significantly  better  than  those  of  existing  traditional  algorithms,  such  as  the  point-cloud  block  method  and  the  point

feature area growth method based on normal vector and curvature. The proposed algorithm achieved the goal of automatically detecting

pit damage in aircraft skin scenes.

KEY WORDS    pit detection；surface fitting；multiscale model；aircraft skin；point-cloud data

飞机蒙皮是飞机暴露于外部的重要构件，在

飞机服役期间常出现各种损伤，如裂纹、划痕、凹

坑等 . 及时准确地对飞机蒙皮进行损伤检测是保

障飞机安全性能的关键 [1]. 当前，机场仍采用以人

工巡检为主的飞机蒙皮损伤检测方法，耗时费力、

主观性强、漏检率高. 开发一种自动化的飞机蒙皮

损伤检测方法对于提高飞机维修效率至关重要.
目前，已有基于计算机视觉的缺陷检测算法

被用于检测飞机蒙皮的裂缝、腐蚀等损伤 . 比如，

张研等 [2] 提出一种基于局部对比度的显著性模型

检测方法，对内含物和划痕的检测性能进行提升；

Ding等 [3] 提出一种由卷积层和全连接层组成的新

型分类器，有效提高了飞机蒙皮脱落、划痕损伤的

检测和分割精度；Cui等 [4] 使用基于卷积神经网络

的数据驱动深度学习方法来检测商用飞机的结构

损伤. 然而，飞机蒙皮的凹坑损伤难以采用视觉方

法进行检测，这是由于：(1)飞机蒙皮背影颜色单

一，飞机蒙皮的凹坑损伤缺乏视觉信息，没有明显

的视觉特征；(2)蒙皮凹坑损伤通常需要测量其尺

寸信息，通过二维图像难以获得凹坑损伤的三维

结构 . 因此，为了能够有效检测飞机蒙皮凹坑损

伤，必须借助于三维数据采集装置，设计基于三维

数据的凹坑检测算法.
基于三维结构数据的缺陷检测算法可以分

为：(1)基于深度神经网络的方法，(2)基于模型配

准的方法，以及 (3)无模型的方法 . 三维缺陷检测

最常见的深度学习模型有 PointNet[5] 及其后续改

进模型 . PointNet模型使用对称函数和 T-net网络，

将 2D神经网络首次应用于 3D数据；后来，Qi等 [6]

通过聚合局部区域来添加上下文信息，使其能够

提取不同尺度下的特征，解决了 PointNet无法提取

局部特征的问题 . 后续对深度模型的改进包括：

Zhou等 [7] 将 Transformer中的注意力模块引入模

型；Wang等 [8] 将 3D点云作为图形结构引入模型；

Zhou等 [9] 将注意力机制引入点云处理等 . 虽然基

于深度学习的点云缺陷检测方法已经获得了广泛

的应用，但是这类方法存在样本数据量需求大，无

法处理精细的局部特征等问题，并且难以给出飞

机蒙皮凹坑损伤的测量结果.
基于模型配准的方法需要待检测缺陷表面的

模型数据，当有待检测点云数据时，通过将待检测

采样数据与已知模型数据进行配准，根据配准结

果确定缺陷位置，一般采样数据与模型数据误差

最大的位置即为缺陷位置 . 典型的有模型方法包

括：张泽等 [10] 通过边缘点云特征描述子进行数据

配准，进而根据匹配结果确定缺陷位置；李军[11] 提

出基于辅助标定球的配准算法，实现配准与缺陷

检测 . 基于模型的配准方法要求提前知道模型数

据，虽然精度较高，但是大多受限于特定领域，难

以扩展.
无模型的点云缺陷检测方法需要借助先验知

识，设计算法估计缺陷的背景区域. 比如，柳晓燕[12]

对散乱点云数据进行法向量、曲率估计，通过模糊

极大似然估计实现点云数据分块；Jovančević等 [13]

通过求取点云曲率、法向量等表面特征进行区域

生长获得损伤区域；Gu等 [14] 利用点云的曲率特征

检测卷心菜上的损伤；Borsu等[15] 利用点云的法向

量、曲率等特征检测车身损伤. 无模型方法应用范

围较广，但同样存在若干缺点：(1)大部分算法假

设缺陷背景表面是平面，需要通过平面拟合技术

检测背景表面，而实际的飞机蒙皮是曲面，飞机蒙

皮的点云数据中可能会包含多个背景平面；(2)无
模型方法需要先估计背景，然后通过计算点云数

据与背景的差值检测凹坑，对于尺度较大的凹坑

损伤，背景估计过程容易存在误差；(3)无模型的

方法通常计算量大，难以实时处理大体量点云数据.
考虑到飞机蒙皮凹坑损伤检测问题的特点，

如点云数据中会包含多个背景平面，飞机蒙皮表

观呈现出规则的曲面形状，以及飞机蒙皮检修业

务在飞机停飞期间进行，需要飞机蒙皮损伤检测

算法具备实时性等，本文提出了一种基于多尺度

曲面背景估计的飞机蒙皮凹坑损伤检测算法 . 该
算法的主要步骤包括：多尺度曲面拟合、局部曲面

模型聚合、背景区域检测和损伤分割 . 其中，多尺
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度曲面拟合是将点云数据拆分为不同尺度大小的

片段，然后对每个片段进行曲面拟合. 以不同尺度

的拆分片段为基本处理单元，可以提高算法的运

行效率，同时提高曲面拟合的准确度. 本算法所依

据的先验知识是飞机蒙皮凹坑损伤的背景区域由

规则的二次曲面构成，而凹坑损伤内部往往为不

规则的结构，可以通过检测不规则曲面来检测飞

机蒙皮凹坑损伤. 

1    蒙皮凹坑检测方法
 

1.1    蒙皮点云数据采集设备

图 1展示了本文工作采用的飞机蒙皮点云数

据采集系统平台. 该系统平台由无人车、升降杆和

深度相机三部分组成. 无人车选用 Robuster MR2000
移动机器人，集成了激光雷达、摄像头、全球定位

系统（GPS）等传感器，具备即时定位与地图构建

（SLAM）、自主路径规划导航和智能避障等功能 .
深度相机安装在升降杆的顶部，通过控制升降杆

的高度控制相机采集数据的位置 . 升降杆的高度

可控范围为 2～5 m. 采集系统通过 Photoneo PhoXi
3D Scanner深度相机获取飞机机身以及机翼处的

蒙皮点云数据.
  

图 1    数据采集设备系统

Fig.1    Data acquisition platform
 

飞机蒙皮点云数据采集平台的工作流程为：

首先开启建图模式，手动遥控小车绕机一周，获取

飞机的三维模型，利用飞机的三维模型建图，获得

导航地图 . 之后通过人机交互的方式选择绕机检

查的起点和终点、飞机检测的高度范围；依据获取

得到的飞机模型、相机覆盖区域以及重叠率要求

进行单元格分解；根据每个单元格的法向量和中

心点按照正视等距的约束条件计算无人车的相机

位姿信息；根据安全距离约束条件以及升降杆高

度约束条件对其进行优化，生成优化后的采样点 .
然后启动自动采集数据功能 . 移动机器人开始自

动绕机检查，到达每一个指定的采样点之后，调整

升降杆的高度，采集点云数据 . 当绕机一周后，能

够获得飞机表观指定区域的所有点云数据 . 该系

统平台通过专用网络将数据回传给数据处理服务

器，在服务器中调用飞机蒙皮凹坑检测算法.
为了避免采集平台抖动带来的数据质量问

题，需要小车在采集点停止之后再采集数据. 采集

平台距离飞机 0.4～1 m，深度相机正视采集部位. 

1.2    蒙皮点云数据集

该数据采集平台在学校停机坪进行了测试和

验证，收集了一个用于测试本文算法的飞机蒙皮

凹坑点云数据集，其中包括损伤数据 55个、无损

伤数据 15个 . 损伤数据主要位于机身和发动机

处，而无损伤数据主要位于机身和机翼处.
由于采集的损伤数据难以覆盖飞机蒙皮所有

部位，在实验中加入了一组凹坑仿真数据，其生成

步骤为：首先根据设定的曲率值生成一个点云的

二次曲面，然后在二次曲面上叠加一个二维高斯

函数模拟凹坑. 通过控制高斯函数的参数，可以模

拟不同位置、尺寸和深度的凹坑. 为保证仿真数据

的可靠性，仿真曲面的曲率根据真实飞机蒙皮点

云数据测量获得；模拟凹坑的大小和深度符合真

实的凹坑参数分布.
真实数据中缺乏机翼处的损伤数据，仿真数

据主要模拟机翼处的凹坑损伤，作为真实数据集

的补充. 由于机翼的检测区域较少，少量的仿真数

据就可以代表这些区域. 

2    蒙皮凹坑检测算法

本文算法流程如图 2所示. 首先对点云数据进

行半径滤波、体素滤波、最小移动二乘法（MLS）
等预处理操作，之后用点云数据进行全局二次曲

面构建，若数据点几乎全在二次曲面上，则认为该

数据无损伤，否则根据点云坐标将数据划分为多

个网格局部蒙皮区域；然后对每个局部蒙皮区域

模型进行估计. 不断重复划分此过程；当拆分结束

后，融合局部蒙皮曲面模型，得到蒙皮的损伤区域

与非损伤区域；最后，在损伤区域中利用表面特征

对凹坑所属点进行集合，得到最终的凹坑损伤检

测结果. 下面将对每一个步骤进行具体阐述. 

2.1    点云数据预处理

通过扫描仪采集的点云数据由于采集原因、

设备原因会含有大量噪声且数据点众多，需要对

点云数据进行平滑和重采样，以保证局部特征信

息的准确性 . 半径滤波的目的是去除点云数据中
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的离群点；体素滤波的目的是进行降采样，以降低

点云密度；MLS的用处是平滑曲面，减少异常法向

量的影响. 故本文算法中通过半径滤波、体素滤波

以及最小移动二乘法对数据进行预处理.
Dp = {(x,y,z)}

(xi,yi,zi) (i ∈ Dp)

T

Dr

半径滤波 [16] 的步骤为：定义 为最

初设备采集的点云数据的坐标集合；对于每一个

点 确定一个半径为 r 的邻域，若邻

域内点数量 N 小于阈值 ，则该点为噪音点 . 定义

为半径滤波后的坐标集合.
Dr

G L×W ×H

体素滤波 [17] 的步骤为：将集合 根据栅格大

小 划分为 个空间栅格，对于每个栅格，

用式 (1)计算栅格内部所有点的重心，用一个位于

重心点的点云数据来代替原有栅格内的所有点云

Dv数据点，实现对数据的降采样，定义 为体素滤波

后的坐标集合.

clwh =
1
k

k∑
i=1

pi （1）

clwh pi k i其中， 、 、 分别为栅格的重心、第 个数据点

的坐标、栅格中点云的总数量.

Dm

体素滤波之后使用 MLS平滑曲面 . MLS[18] 是
一种在不动点附近通过高阶多项式插值从一组无

组织的点数据中重建曲面的方法 . 本文工作使用

二阶多项式来近似曲面，因为飞机蒙皮最接近这

种类型的表面. 定义 为MLS后的坐标集合. 图 3
为使用 MLS前后缺陷局部法向量放大图 . 从图 3
可以看到，在使用MLS平滑后，可以消除小的误差，
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图 2    算法流程图

Fig.2    Algorithm flow chart

 

(a) (b)

图 3    局部法向量放大图. (a) MLS前法向量放大图; (b) MLS后法向量放大图

Fig.3    Magnified view of local normal vector: (a) magnified view of the normal vector before MLS; (b) magnified view of the normal vector after MLS
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进一步估计曲面的固有性质，如法向量等. 

2.2    局部蒙皮区域划分

经过数据预处理之后，所有数据的密度明显

降低，并且点云数据近似均匀分布. 此时可以通过

基于区域生长的方法检测点云数据中的背景和凹

坑区域 . 但是，由于点云数据量大，区域生长方法

速度太慢；而且，如果以点云中的数据点为基本单

元处理数据，生长过程依然会受到点云数据的噪

点影响 . 因此，为了提高区域生长的鲁棒性，以及

加速区域生长的效率 . 本文算法中将点云数据拆

分为网格，然后以网格为基本单元进行分析. 飞机

蒙皮点云数据的特性通常是高密度的，可以提供

详细的表面信息并捕捉到飞机的曲面模型形状，

考虑到这种特性，需要在进行模型拟合时选用二

次曲面模型 . 点云的分割过程是一个迭代的过程 .
首先判断整个点云数据是否满足一个二次曲面模

型，如果整个点云数据满足二次曲面模型，说明其

中无凹坑损伤，否则将整个点云数据曲面拆分为

多个子区域，再判断拆分单元是否满足二次曲面

模型，不断重复以上过程直到所有的拆分单元都

符合二次曲面模型 . 最后拆分的结果可以被视为

一个多尺度的区域树结构.

u×u gi（i = 1, · · · ,
n） u

在具体的操作过程中，每次将一个区域拆分

成 个网格，共 n 个网格区域 . 定义

表示划分的网格区域 .  的取值决定了区域树

结构中每层拆分单元的尺度大小 . 如果 n 取值过

小，会导致曲面模型拟合效果较差；如果 n 取值过

大，会导致计算时间太久. 另外，n 的取值需要考虑

待检测凹坑的大小，参数 u 的选择过程见 3.1节. 

2.3    全局与局部蒙皮曲面模型估计

Pp = (x,y,z)

gi = {Pp}

np

对 2.2节中分割的每一个网格区域，用一个二

次曲面对每个网格进行拟合. 定义 为每

个网格中的点云坐标，定义 为包含当前局

部区域的坐标集合，局部区域中的点云数据总数

记为 . 通过二次曲面模型对局部蒙皮区域进行

建模，有： 
z−Hp · zp = 0

zp =
(
1, x,y, xy, x2,y2

)T
Hp = (a0,a1,a2,a3,a4,a5)

（2）

zp
Hp a0 ∼ a5

Hp

其中，z 为待估计的二次曲面模型， 为二次曲面

中的自变量， 为待估计的二次曲面参数，

为 中的具体参数.
gi对于式 (2)中的二次曲面方程，最少从集合

中取出 6个点代入方程，联立等式，可得二次曲面

Hp参数，但是直接选取 6个点求解方程得出的 受

噪声影响较大 . 因此，为了克服噪音影响，本文中

采用随机抽样一致算法 (RANSAC)[19−20] 估计网格

数据的二次曲面，并且通过算法可以将输入数据

分为内点 (最大一致性集)和外点 (非最大一致性

集)，具体步骤为：

gi（1）从 中随机选择 6个点，利用式 (2)计算出

二次曲面模型，

Pp

Hp d⊥(Hp,Pp)

（2）计算网格中每一个点 到飞机蒙皮二次

曲面模型 间的距离 ：

d⊥
(
Hp,Pp

)
= min

Xp∈gi
||Xp−Pp|| （3）

Xp Hp Pp其中， 表示位于二次曲面 上距离 最近的点，

可以通过求解下面的拉格朗日函数得到.

f
(
Xp,Pp,Hp

)
= ||Xp−Pp||2+λ

(
z−Hp ·Pp

)
（4）

λ其中， 为拉格朗日因子.
Z

d⊥(Hp,Pp) < Z Pp

Pp Z

（3）根据一个距离阈值 将网格中的所有点分

为内点和外点，若 ，则点 为内点；

否则，点 为外点. 参数 的选择过程见 3.1节.
nin（4）内点的个数称为该模型的支集，记为 .

重复以上实验随机选择 K 次，具有最大支集 (最大

一致性集)的二次曲面模型被认为鲁棒性拟合.
γ

γ

（5）定义 为算法选出的最大内点集，通过最

小化 的距离和重新计算飞机蒙皮二次曲面模型

(式 (5))，同时计算得到曲面模型分数 S.
∧

Hp = argmin
∧

Hp

∑
Pp∈γ

d⊥
(
Hp,Pp

)
（5）

S = nin
/

np （6）
∧

Hp Hp其中， 表示 的估计结果. 曲面模型分数 S 用于

判断网格中是否存在缺陷点.
步骤（4）中的迭代次数 K 通过公式 (7)确定：

K = lg (1−o)/lg
(
1− (1−ε)6

)
（7）

o = 0.99 ε

ε

ε = 1 K =∞ ε

ε = 1−内点数/点云数
ε

其中，o 为 K 次随机采样中至少有一次没有外点的

概率，此处取 .  为任意选择的点为外点的

概率 . 由于 未知，本文算法从其最差估计起，即

，此时 ，当发现更大的一致集时就把 的

原值更新为 ，然后利用更新后

的 重新计算迭代次数 K. 

2.4    曲面背景融合及凹坑检测

根据 2.2节和 2.3节的步骤可以将点云数据拆

分为多个不同尺度的网格，并且得到各个网格的

二次曲面模型和分数. 将曲面模型、分数、索引及
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其邻接区域信息存入邻接矩阵，之后通过聚合空

间相邻且特征相似的网格获取曲面背景区域 . 为
了聚合网格区域，需要利用每个网格的分数和特

征值，这里采用网格的平均法向量 [21−22] 和空间坐

标来描述每个网格的形态特征.

Q

Q

Q

Q

首先利用得到的曲面模型和分数先进行背景

区域估计 . 设置一个分数阈值 ，对于分数 S 高于

的网格区域，认为当前区域没有损伤，根据网格

的区域树结构和邻接矩阵得到当前网格的空间相

邻关系和平均法向量，若背景区域为空，则添加当

前区域；反之若两个网格空间相邻、平均法向量相

似即法向量夹角小于 5°，则聚合当前区域，不断重

复过程直至得到背景区域；此时余下网格区域即

为损伤网格区域 . 算法中 的取值为 0.98，确定

的过程见 3.1节.

pi

对于损伤网格区域，计算网格中每个点云数

据的法向量：给定点 ，根据二叉树搜索与其最近

邻的 h 个相邻点，然后用最小二乘法拟合区域的

局部平面 U，此平面能够被表示为：

U (v,d) = argmin
(v,d)

h∑
i=1

(v · pi−d)2 （8）

v其中， 为平面 U 的法向量，d 为 U 到坐标原点的

距离. 该平面法向量即为该点的法向量. 由于在半

径滤波时，将邻域半径设为 1 mm时获得了最好的

滤波效果，因此在计算点特征时采用相同的邻域

范围，取 h=30.

ei

b0 < b1 < b2

点云数据的曲率 [23] 通过主成分分析 (PCA)[24]

得到，首先根据式 (9)计算点云数据周围 h 个相邻

点 的协方差矩阵 M，对协方差矩阵 M进行特征

值分解[25]，求得M的三个特征值，M的最小特征值

所对应的特征向量即 U 的法向量；若特征值满足

，则 U 的表面曲率见式 (10).

M =
1
h

h∑
i=1

(ei− p0) (ei− p0)T （9）

δ =
b0

b0+b1+b2
（10）

δ其中，p0 指中心点； 代表领域平缓程度，值越小表

明邻域越平坦，越大则表明邻域起伏变化越大.
当得到损伤网格区域的曲率和法向量之后，

根据计算当前点的曲率与平均曲率的差值和法向

量与相邻点的法向量夹角来进行凹坑点的筛选；

若法向量夹角大于 5°且差值大于给定阈值 C，则

认为该点为凹坑点，否则为背景点. C 的选择过程

见 3.1节. 将背景点根据空间坐标相邻关系进行聚

合，凹坑点聚合成损伤区域，得到最终的背景区域

和损伤区域. 

3    实验结果

根据飞机蒙皮点云数据中凹坑损伤与曲面背

景的结构特征差异，本文提出了一种基于多尺度

曲面背景估计的飞机蒙皮凹坑损伤检测算法 . 为
验证算法的有效性，需要进行相关实验来评估其

性能和精度.
测试本文算法所用电脑配置为 AMD Ryzen 5

2600 Six-Core Processor 3.40 GHz，32.0 GB RAM；算

法通过 C++和 Python编程实现，并在凹坑数据集

上完成了飞机蒙皮凹坑损伤测试 . 为量化检测结

果，采用准确率 A、召回率 R、F值和算法检测时间

来评估算法的效果 . 前三个值的计算依赖于 True
Positive(TP：真正)、False Positive(FP：假正)和 False
Negative(FN：假负)，其中，TP表示算法将真实凹坑

正确识别为凹坑的个数，FP表示将无损伤点云数

据错误识别为凹坑的个数，FN表示为将真实凹坑

误识别为无损伤的个数 . 三个指标：准确率 A、召

回率 R、F值的计算公式如下所示：

A = TP/(TP+FP) （11）

R = TP/(TP+FN) （12）

F = (2×A×R)/ (A+R) （13）
 

3.1    参数选择

算法中的 4个主要参数分别为曲面拟合距离

阈值 Z、曲面模型分数阈值 Q、网格拆分阈值 u 和曲

率阈值 C. 这 4个参数通过实验测试其最佳取值.
曲面模型分数阈值 Q 用于判断一个网格区域

是否为背景区域. 为了确定 Q 的最佳取值，统计了

15个背景区域的 S 值分布，其分布如图 4所示，取

分布的下限值 0.98作为判断背景区域的阈值，可

以保证所有的背景区域不会被误识别为凹坑区域.

Z = 0.5

u = 4

图 5～图 7所示的测试结果证明了 Z、C、u 三

个参数不相关 . 从图 5可以看出，当选择不同的

u 和 C 时，改变参数 Z，获得的算法评分值都展示

相同的演化规律，即逐渐增加，并在 时达到

最大，这说明 Z 与另外两个参数不相关，且最佳取

值为 0.5. 从图 6可以看出，当 C 设置为不同的取值

时，算法的评分值随参数 u 的变化曲线展示出相

似的规律，即先增大再减小，在 时获得最佳效

果，这说明参数 C 和 u 无关，且 u 的最佳取值为 4.
最后，图 7展示了在参数 Z 和参数 u 取最优值时参

数 C 的变化趋势，选取最高值作为其最佳取值. 
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3.2    算法对机身部位性能分析

表 1展示了本文算法在凹坑样本数据集上的

检测性能. 从整体测试效果来看，本文算法具有较

为良好的检测性能.
为进一步分析检测结果误差原因，图 8展示了

算法成功和失败的两个案例 . 本文算法在发动机

处出现了检测失败 . 原因在于发动机处的弧度远

大于机身区域的弧度 . 进一步分析机身和发动机

处的点云曲率特征分布可知（图 9），由于机身处的

曲率变化范围较小，得到的曲率结果会明显集中

于某一较窄的范围内，只有在凹坑突变处有明显

的变化特征，整体变化情况较小. 然而发动机处的

曲率特征数据变化范围大，很容易将凹坑附近的

曲率突变遮盖，导致识别结果出错. 

3.3    检测结果算法对比分析

同时为了客观评价本文算法的有效性，将本

文算法分别与点云分块算法和点特征区域生长法[13]

进行对比. 点云分块算法是将点云数据分块进行识

别的损伤检测算法 . 点特征区域生长法 [13] 是最典

型的根据表面相似区域特征一致的缺陷检测算法.
表 2与表 3展示了本文算法、点云分块算法

和点特征区域生长法在真实蒙皮数据集和仿真数

据上的损伤检测结果 . 三种算法在仿真点云数据

上均表现优异；在真实数据集上点云分块算法和

点特征区域生长法评分值不高，且耗时更久；另外

本文算法的准确率为 92.86%，召回率为 86.67%，

F值为 89.92%，耗时明显优于对比算法.
综合表中的各个算法检测结果及部分蒙皮凹

坑检测实例（图 10），本文对不同算法的表现进行

了进一步的分析.
（1）点云分块算法是将整个数据划分为多个

网格后，通过求取每个点的局部特征与区块内部

的平均法向量曲率，来确定损伤边界，以此做出损

伤检测 . 仿真点云数据虽然极大部分模拟了蒙皮

的结构，但是由于仿真数据为平面且排列平整，噪

点干扰数量较少，因此点云分块算法能够准确识
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表 1    算法在不同来源数据的平均准确率

Table 1    Average accuracy of the algorithm on different sources of data

Sample Source Number Correct Accuracy/%

Damage Tarmac 15 13 86.67

No damage Tarmac 15 15 100.00

Damage Simulation data 40 40 100.00
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别仿真数据中的损伤；蒙皮数据多为有一定曲率

的二次曲面，同时由于飞机或者采集设备原因，其

点云数据存在一定的噪点干扰，导致点云排列无

序 . 因此点云分块算法并不能很好地处理这种情

况，导致该算法无法获得理想的检测结果.
（2）点特征区域生长法是对每个点求取表面

特征，根据表面特征将整体点云分为多个相似区

域的算法. 由此可知，表面特征会对该算法产生很

大的影响. 其在仿真数据集检测结果很好，这是因

为仿真数据法向量具有极大的相似性. 然而，在真

实情况中，点云分布杂乱，通过 PCA求取的法向量

依赖于周围点的分布情况，会导致每个点的法向

量偏向不同，在聚合过程中丢失数据.
（3）本文算法检测用时明显少于两种对比算

法 . 主要原因是在本文算法中将整个点云数据描

述为一个点云区域的树形结构 . 对于大片的满足

二次曲面拟合的网格，直接作为一个整体处理，大

大降低了算法的计算时间.
表 4进一步对比了三种算法针对不同飞机蒙

皮区域的检测效果. 图 11展示了三种算法针对于

不同区域的检测实例图 . 不同区域的主要区别在

于曲率不同，机翼表面最为平整，曲率值最小，近

似为平面；机身表面存在一定的曲率；发动机表面

的曲率最大，且发动机表面存在曲率突变的现象.
三种检测算法在发动机处和机翼处都获得了

相同的准确率. 主要差异表现在机身处，本文算法

表现最优，准确率达到 100%，点特征区域生长法

次之，点云分块算法表现最差，准确率只有 35%.
点云分块算法更加适用于检测平面上的缺陷，点

特征区域生长法具备检测曲面凹坑的能力，但是

由于曲面上点云数据的非均匀分布会导致点特征

计算误差较大，影响区域生长效果. 

 

(a)   (b) 
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图 8    算法识别结果案例. (a)发动机处; (b)机身处

Fig.8    Examples of algorithm recognition results：(a) engine; (b) airframe
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图 9    点云数据曲率特征分布

Fig.9      Distribution  of  curvature  characteristics  of  the  pit  point-cloud
data

 

表 2    真实蒙皮数据集检测结果

Table 2    Detection results on real skin dataset

Method Accuracy/% Recall/% F value/% Time/s

Point cloud segmentation method 4.00 20.00 6.67 20.00

Literature[13] 30.77 26.67 28.79 25.00

Algorithm of this article 92.86 86.67 89.92 6.00

 

表 3    仿真蒙皮数据集检测结果

Table 3    Detection results of simulated skin dataset

Method Accuracy/% Recall/% F value/% Time/s

Point cloud segmentation method 100.00 92.50 96.10 11.00

Literature[13] 100.00 100.00 100.00 15.00

Algorithm of this article 100.00 100.00 100.00 1.20
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3.4    分析与讨论

（1）光照与高密度讨论：采集点云时不受背景

条件影响，光照条件一般应避开高强度的阳光直

射. 考虑到绕机检查作业是在航前/航后进行，一般

发生在清晨或者傍晚，因此室外光照不会对点云

数据采集产生影响. 而在有关于离群点、点云密度

大等条件下，我们选择在预处理环节来解决这些

问题，通过半径滤波可以明显去掉数据中的离群

点；体素滤波可以减少数据的高密度.

u

Z C

u

Z C

u Z C

Z

（2）参数讨论：参数 用于网格区域拆分，参数

用于网格区域曲面拟合，而参数 用于聚合网格

区域 . 从参数的作用来看，三者并无相关性 . 比如，

改变参数 的大小，只会影响拆分网格区域的大

小，不会改变网格区域的曲面特征. 而在曲面拟合

和聚合过程中，参数 和参数 只与拆分网格的曲

面特征有关，而与网格的大小无关，这说明，参数

的选择不会影响到参数 和参数 的效果 . 另外，

改变参数 的大小，只会影响拆分网格区域中背景
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图 10    蒙皮凹坑检测实例. (a)真实蒙皮数据集; (b)仿真蒙皮数据集

Fig.10    Example of skin pit detection: (a) real skin dataset; (b) simulated skin dataset

 

表 4    不同算法在不同部位的平均准确率

Table 4    The average accuracy of different algorithms on different parts of data

Position Accuracy (Point cloud segmentation method)/% Accuracy (Literature[13] )/% Accuracy (ours)/%

Engine 0.00 0.00 0.00

Fuselage 35.00 50.00 100.00

Wing 100.00 100.00 100.00

 

Raw data Literature[13]Point cloud segmentation method Algorithm of this article

Engine

Fuselage

Wing

图 11    针对不同区域检测实例图

Fig.11    Detection examples for different areas
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Z C

点的数目，但是不会影响背景点的曲率值，而曲面

聚合主要利用曲面背景的平均曲率值，这说明参

数 的选择并不会影响参数 的效果. 

4    结论

(1) 本文设计了一种基于多尺度曲面模型的飞

机蒙皮凹坑损伤检测算法. 通过有效拆分数据，得到

局部特征下的二次曲面融合模型，利用曲率等局部

特征对凹坑点进行筛选，获得准确的凹坑检测结果.
(2) 通过在飞机蒙皮数据集上进行的测试表

明，该算法的准确率、召回率和 F值分别为 92.86%、

86.67% 和 89.92%，平均时间达到 6 s，受噪声干扰

较少，漏检率误检率较低.
(3) 直接研究点云无法保证其拓扑信息，导致

本文算法无法给出更加精细的测量结果，后续研究

考虑结合点云数据与三维网格数据各自的优势，

研究鲁棒性更好的飞机蒙皮凹坑检测与测量算法.
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