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Aircraft skin pit damage detection algorithm based on multiscale surfaces
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ABSTRACT To address the problems of strong noise interference, long detection times, uneven fuselage surfaces, lack of visual
information in two-dimensional images, and difficulty in automatic detection, an automatic detection algorithm for aircraft skin pit
damage based on a multiscale surface model was designed. First, an automatic acquisition platform system was constructed using an
unmanned vehicle, a lifting pole, and a depth camera. The point-cloud data of the aircraft skin was obtained using this acquisition
platform system. The point-cloud data were then preprocessed using the radius filter algorithm, voxel grid filter algorithm, and moving
least squares algorithm. Then, the preprocessed point-cloud data were divided into multiscale regions and split into multiple local skin
mesh regions to obtain multiple local grid area data. For each local grid region data, the surface models of each local grid region and
regional spatial adjacency were obtained by constructing and optimizing the estimation of the local quadric surface based on the random
sampling consensus algorithm. The spatial adjacency, surface model, and its index together form the region tree. The local surface
models at different scales were aggregated by storing information and normal vector angles in the region tree to identify the damaged and
nondamaged regions. Finally, surface features, such as curvature and normal vector, were used to cluster the pit points in the damaged
area, and the pit point-cloud data were aggregated to obtain the final pit damage results. The proposed algorithm was compared with
existing traditional algorithms, such as the point-cloud block method and the point feature region growth method based on normal vector
and curvature. Experimental results showed that the accuracy, recall, and F-value of the point-cloud block method were 4.00%, 20.00%,
and 6.67%, respectively, with an average detection time of 20 s. For the point feature region growth method based on normal vector and

curvature, the accuracy, recall, and F-value were 30.77%, 26.67%, and 28.79%, respectively, with an average detection time of 25 s. The
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accuracy, recall, F-value, and average detection time were significantly improved, with mean values of 92.86%, 86.67%, 89.92%, and

6 s, respectively. Additionally, the detection results of the three algorithms on the aircraft skin engine, fuselage, and wing were

compared, and the influence of curvature in different regions on the algorithm was analyzed. The detection results of the proposed

algorithm were significantly better than those of existing traditional algorithms, such as the point-cloud block method and the point

feature area growth method based on normal vector and curvature. The proposed algorithm achieved the goal of automatically detecting

pit damage in aircraft skin scenes.

KEY WORDS pit detection; surface fitting; multiscale model; aircraft skin; point-cloud data
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Fig.7 F values of the algorithm in this paper with different C values
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Table 1 Average accuracy of the algorithm on different sources of data

Sample Source Number Correct Accuracy/%

Damage Tarmac 15 13 86.67
No damage Tarmac 15 15 100.00

Damage Simulation data 40 40 100.00
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Fig.5 F values of the algorithm in this paper with different Z values

0.9 ¢ A - 7=0.5, C=2
7N = 2=05.C=3
0.8 -+ 7=0.5, C=4
07} o
8 £ FE LY
£ 06 p .
=
0.5
L]
04F
-

20 25 30 35 40 45 50 55 60
u
B 6 uBURRIERASCRLRY F(H

Fig.6 F values of the algorithm in this paper with different u values
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Table 2 Detection results on real skin dataset

Method Accuracy/% Recall/% F value/% Time/s
Point cloud segmentation method 4.00 20.00 6.67 20.00
Literature[13] 30.77 26.67 28.79 25.00
Algorithm of this article 92.86 86.67 89.92 6.00
R3PS BHARAAZE A
Table 3 Detection results of simulated skin dataset
Method Accuracy/% Recall/% F value/% Time/s
Point cloud segmentation method 100.00 92.50 96.10 11.00
Literature[13] 100.00 100.00 100.00 15.00
Algorithm of this article 100.00 100.00 100.00 1.20
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Fig.10 Example of skin pit detection: (a) real skin dataset; (b) simulated skin dataset
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Table 4 The average accuracy of different algorithms on different parts of data

Position Accuracy (Point cloud segmentation method)/% Accuracy (Literature[13] )/% Accuracy (ours)/%
Engine 0.00 0.00 0.00

Fuselage 35.00 50.00 100.00
Wing 100.00 100.00 100.00

Raw data  Point cloud segmentation method Literature[13] Algorithm of this article
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Fig.11 Detection examples for different areas
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