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Research progress on the structure of hydration films at solid-liquid interfaces

ZHANG Na*, KOU Jue, SUN Chunbao
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DCorresponding author, E-mail: nazhang@ustb.edu.cn

ABSTRACT Solid-liquid interfaces are pervasive across the material world, playing a crucial role in various fields such as mineral
flotation, oil mining and processing, and soil improvement. At these interfaces, the hydration film, a nanostructure, significantly
influences their properties. The structure and thickness of the hydrated film are affected by the properties of the solid surface and the
solution. This review takes mica and calcite as examples and summarizes advances in understanding the structure of hydration films at
solid-liquid interfaces through X-ray reflectivity (XR) and atomic force microscopy (AFM). It discusses the structures of hydration films
on different mineral surfaces. It discusses how metal cations in solution, as well as ion dissociation, affect the mineral surface on these
structures. The mica surface participates in ion exchange with H;O" or other cations in the solution, resulting in a hydration film
consisting of an adsorbed layer followed by the first and second hydration layers. Ca*" and CO%‘ dissociate and interact with the
hydration film, creating a checkerboard-like pattern. The hydration film encompasses four layers, with Ca** and CO%‘ sites alternating
within. The thickness of the hydration film varies with ion concentration and type in the solution. For example, as the K* concentration
increases, the thickness of the hydration film on the mica surface increases. However, when K" is replaced by Cs’ in the solution, the
thickness of the hydration film on the mica surface reduces or even disrupts this film. The hydration film structures obtained by XR and
AFM are also compared. XR measurements provide the electron density distribution on the crystal surface, allowing for analysis of the
hydration film’s structure. By contrast, AFM measures the force—distance curve between the probe and the water on the sample surface,
along with corresponding imaging. Both XR and AFM provide information on the thickness and structure of the hydration film on the

mineral surface. However, the boundary between the mineral surface’s hydration film and bulk water is not defined owing to the
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dynamic nature of hydration films, leading to variations in measured thickness across different instruments, generally in the range of

several nanometers. The objective of this review is to deepen understanding of the hydration structure at the solid-liquid interface,

promoting further research into the dynamic behavior of hydration films.

KEY WORDS hydration films; X-ray reflectivity; atomic force microscopy; mica; calcite
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Fig.1 Schematic of X-ray reflectivity measurements™*!
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Fig.2 Schematic of 3D atomic force microscopy measurements*
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Fig.4 The distribution of elements and electron along the mica surface in solution: (a) density distribution of interfacial water oxygen as a function of

distance z from mica surface in pure water obtained by X-ray reflectivity measurements”; (b) electron density profiles of a mica/0.6 mol-L ' NaCl solution

obtained from MD simulations'**!
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Fig.5 Atomic scale structure of hydration layers on mica surface in KCI solution: (a) the 3D AFM images of hydration layers on the surface of mica in

0.2 mol-L™' KCl solution (the red represents the monolayer of adsorbed K", light blue represents the two hydration layers (2™ and 3" hydration layer), dark

blue represents the bulk water); (b) the two dimensional image of hydration layers along xz direction on the surface of mica in 0.2 mol-L™' KCI solution;

(c) the force curves along the vertical dash lines in b; (d) the 3D AFM images of hydration layers on the surface of mica in 4 mol-L™' KCI solution; (e) the

two dimensional image of hydration layers along xz direction on the surface of mica in 4 mol-L™' KCl solution; (f) the force curves along the vertical dash

lines in e*?
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