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Lithium-ion battery fault diagnosis method based on KPCA-MTCN
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ABSTRACT The paper proposes a method based on kernel principal component analysis (KPCA) and multi-scale temporal
convolution network (MTCN) for identifying faults in lithium-ion batteries, which is crucial for ensuring the safe and stable operation of
energy-storage systems. Lithium-ion batteries are the primary component of energy storage units. The method involves the following
steps: First, fault data are normalized, and KPCA is used for dimensionality reduction and single fault detection to reduce computational
complexity and improve data reliability. According to the different types of overcharge faults and unknown faults, KPCA is used to
reduce the data from the original dimension to 2 or 4 dimensions. The KPCA model is trained using the normal data corresponding to the
two groups of fault data, and the fault data are inputted as the test data. The results show that the SPE statistic and the T2 statistic
considerably exceed the control limit, verifying the reliability of the data. Then, the data are labeled according to the fault type: the
overcharge data are labeled as DO (normal) and D1 (fault), and the unknown fault data as FO (normal) and F1 (fault). The labeled data are
divided into training and test sets according to a specific proportion. Afterward, the MTCN model is trained with the training dataset, and
its hyperparameters are optimized with the frost algorithm to improve model accuracy. Finally, the trained MTCN model is used to
classify the test dataset. The method is validated on two groups of data: overcharge fault data and unknown fault data. The results show
that the frost algorithm can optimize the hyperparameters after about 20 iterations. Compared with LSTM and CNN, which are also
optimized by the frost algorithm, MTCN achieves a higher classification accuracy, reaching 99.265% and 99.688%, on the overcharge
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fault dataset and unknown fault dataset, respectively, while maintaining comparable performance to Xception and ResNet50.

Additionally, to verify the influence of the training data amount, the training and test sets are divided according to different proportions,

and the three algorithms are tested. KPCA verifies the reliability of charging fault and unknown fault data, and the results show that

MTCN has the highest classification accuracy, especially on the overcharge fault dataset. Owing to the low dimensionality of the original

data set, LSTM and CNN exhibit poor classification performance. In contrast, MTCN can extract more temporal information, achieving

high classification accuracy. These results demonstrate the effectiveness and superiority of the method in fault diagnosis of lithium-ion

batteries.

KEY WORDS Lithium-ion battery; fault diagnosis; kernel principal component analysis; multi-scale sequential convolutional

network; frost and ice algorithm
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Table 1 Essential parameters of the battery

Rated Capacity/(A-h) Rated voltage/V Rated energy/(W-h)

Battery weight/kg

Battery volume/L Internal resistance/mQ

280 3.2 896

5.35+0.16 2.55 <0.25

FARL R LR RENT: (1) EERn
B Bl DL ISR R A R R E 3.8V
Jei, fEEFE L U TR 0, & 1 h 5 4k kb
FL, A R e R B R T e 4 R () R RE A
EHARG RS, SR JE RN 5.2 V B FE L LR, £F
22200 s ol B TR R 0, Gt I 78 52 B 45 0. ATk
I 2 A S 4 b A P 1 BT R, R T AR
RS W I PR 3R | F R R L B s (3) 1B FE AL K
BB DL 1 AR PR A B o 2 3.8 V A, fHE
FEHER PN 0, ZWEL Z R, IFid kR
Vi FL A IR RO AR O IE R TS LIRS TR 4L
P B 158 70 RO B AS AR A DO, 3 7 A 1
RAEFRHEN DI

B AR

Fig.1 Lithium battery overcharge experiment
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Table 2 Monitoring variables related to operating status

Variables Unit Variables Unit
Main circuit current A | Minimum cell temperature ~ C
Maximum cell voltage mV | Average cell temperature C
Minimum cell voltage mV | Maximum pole temperature ~ C
Maximum high-pressure box

Average cell voltage mV temperature C
Insulation resistance kQ sSocC %
Maximum cell temperature ~ C SOH %
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Table 3 Overcharge fault data hyperparameter optimization results
Network type Hyperparameters Value Hyperparameters Value
Minimum batch size 500 Number of filters 21
MTCN

Number of residual blocks 2 Filter size 2
Number of hidden layers 2 Number of neurons 25

LSTM . . .
Minimum batch size 1000 Drop layer probability 0.1
Number of convolutional layers 5 Number of convolution kernels 30

CNN

Convolution kernel size 2 Drop layer probability 0.1
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Fig.9 Classification accuracy of the training process
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Table 4 Evaluation indicators for overcharge fault diagnosis

Evaluation index

Diagnosis method Fault type Time/s
Precision/% Recall/% F1 score/% Accuracy/%

DO 99.980 98.928 99.452

MTCN 99.265 0.817
D1 97.834 99.960 98.885
DO 97.952 79.801 87.950

LSTM 82.106 0.457
D1 50.414 92.486 62.256
DO 98.700 80.540 88.700

CNN 82.235 0.434
D1 52.304 95.265 67.531
DO 99.980 98.813 99.393

Xception 99.186 0.828
D1 97.598 99.960 98.764
DO 100.000 98.411 99.199

ResNet50 98.923 0.928
Dl 96.770 100.000 98.359
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Table 5 Evaluation indicators for unknown fault diagnosis

Evaluation index

Diagnosis method Fault type Time/s
Precision/% Recall/% F1 score/% Precision/%

FO 100 99.577 99.788

MTCN 99.688 0.806
F1 98.817 100 99.405
FO 92.786 100 96.258

LSTM 94.690 0.394
F1 100 83.251 90.860
FO 96.258 100 98.093

CNN 97.245 0.387
F1 100 90.550 95.041
FO 99.036 100 99.515

Xception 99.290 0.777
F1 100 97.381 98.673
FO 99.151 99.942 99.545

ResNet50 99.333 0.836
Fl1 99.839 97.684 98.750
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Table 6 Impact of data training volume on accuracy %
Ratio
Fault type Method
5:5 6:4 7:3 8:2
MTCN 99.275 99311  99.265 99.232
LSTM 79.693 82239 82.106 81.236
Overcharge CNN 79.260  79.866  82.235  78.854
Xception  99.015  99.134  99.186  99.390
ResNet50  99.134  99.055 98923 99.370
MTCN 98.765  99.478  99.688  99.212
LSTM 95.996 95315 94.690 96.933
Unknown CNN 95.536 97.412 97.245 95315
Xception  99.676  99.805  99.290  99.340
ResNet50  99.310  99.872  99.333  99.808
4 it
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