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摘    要    为了维护储能系统的安全稳定运行，本文针对锂离子电池故障诊断这一重要问题，提出了一种结合核主成分分析

(KPCA)和多尺度时序卷积网络 (MTCN)的故障诊断方法. 该方法首先归一化故障数据，然后利用 KPCA降低数据维度并校

验数据的可靠性；其次，根据故障类型对数据进行标注，并按比例划分训练集和测试集；接着在训练阶段使用霜冰算法

（RIME）优化 MTCN模型的超参数以提高模型的精度；最后基于故障数据验证 MTCN的分类精度，并与长短期记忆神经网络

(LSTM)、卷积神经网络 (CNN)、Xception和 ResNet50进行比较. 在 KPCA验证充电故障和未知故障数据的可靠性后，基于两

组数据测试的结果表明，相比于 CNN和 LSTM，MTCN对于两组故障的分类准确率均为最高，分别达到了 99.265% 和

99.688%，与 Xception和 ResNet50较为接近. 同时针对训练数据量的测试结果表明，在训练数据量较少时 MTCN仍能保持较

好的诊断效果，说明MTCN的并行结构可以从不同的尺度提取更多的时序信息.

关键词    锂离子电池；故障诊断；核主成分分析；多尺度时序卷积网络；霜冰算法
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ABSTRACT    The  paper  proposes  a  method  based  on  kernel  principal  component  analysis  (KPCA)  and  multi-scale  temporal

convolution network (MTCN) for identifying faults in lithium-ion batteries, which is crucial for ensuring the safe and stable operation of

energy-storage  systems.  Lithium-ion  batteries  are  the  primary  component  of  energy  storage  units.  The  method involves  the  following

steps: First, fault data are normalized, and KPCA is used for dimensionality reduction and single fault detection to reduce computational

complexity  and  improve  data  reliability.  According  to  the  different  types  of  overcharge  faults  and  unknown  faults,  KPCA is  used  to

reduce the data from the original dimension to 2 or 4 dimensions. The KPCA model is trained using the normal data corresponding to the

two  groups  of  fault  data,  and  the  fault  data  are  inputted  as  the  test  data.  The  results  show  that  the  SPE  statistic  and  the  T2  statistic

considerably  exceed  the  control  limit,  verifying  the  reliability  of  the  data.  Then,  the  data  are  labeled  according  to  the  fault  type:  the

overcharge data are labeled as D0 (normal) and D1 (fault), and the unknown fault data as F0 (normal) and F1 (fault). The labeled data are

divided into training and test sets according to a specific proportion. Afterward, the MTCN model is trained with the training dataset, and

its  hyperparameters  are  optimized  with  the  frost  algorithm  to  improve  model  accuracy.  Finally,  the  trained  MTCN model  is  used  to

classify the test dataset. The method is validated on two groups of data: overcharge fault data and unknown fault data. The results show

that  the  frost  algorithm can  optimize  the  hyperparameters  after  about  20  iterations.  Compared  with  LSTM and  CNN,  which  are  also

optimized by the frost algorithm, MTCN achieves a higher classification accuracy, reaching 99.265% and 99.688%, on the overcharge 
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fault  dataset  and  unknown  fault  dataset,  respectively,  while  maintaining  comparable  performance  to  Xception  and  ResNet50.

Additionally, to verify the influence of the training data amount, the training and test sets are divided according to different proportions,

and  the  three  algorithms are  tested.  KPCA verifies  the  reliability  of  charging  fault  and  unknown fault  data,  and  the  results  show that

MTCN has the highest classification accuracy, especially on the overcharge fault dataset. Owing to the low dimensionality of the original

data set, LSTM and CNN exhibit poor classification performance. In contrast, MTCN can extract more temporal information, achieving

high classification accuracy. These results demonstrate the effectiveness and superiority of the method in fault diagnosis of lithium-ion

batteries.

KEY  WORDS    Lithium-ion  battery； fault  diagnosis； kernel  principal  component  analysis； multi-scale  sequential  convolutional

network；frost and ice algorithm

锂离子电池具有寿命长、能量密度高和成本

低等优点，因此在储能领域有广泛的应用前景 [1].
然而，锂离子电池的安全性仍然是一个亟待解决

的难题，由于电池的充放电过程涉及电化学反应，

可能会出现过充、过放、短路以及过热等异常情

况[2]，导致电池性能下降，甚至发生热失控等事故[3].
这些故障不仅会危及电池本身，还会影响储能和

电网的安全 [4]. 因此，对锂离子电池的状态实时监

测，及时诊断并处理故障，是保障储能系统安全的

重要措施之一[5].
通常，按照危害程度可以将锂离子电池故障

分为渐变性故障和突发性故障，渐变性故障是指电

池的老化程度超出阈值，突发性故障是指电池突

然失效[6]. 对渐变性故障的诊断主要通过剩余使用

寿命预测实现[7]，而对突发性故障的诊断一般有两

种方法：基于模型驱动和基于数据驱动的方法[8].
基于模型驱动是指构建故障模型，与系统模

型进行比较获得残差信号，并使用状态评估和参

数辨识等方法对残差信号进行评估 . Feng等 [9] 提

出将电化学热耦合模型应用于内短路故障诊断，

并分析出荷电 (State of charge, SOC)状态和发热功

率是有效的诊断指标 . Sidh等 [10] 使用阻抗谱和等

效电路构建非线性电池特征故障模型，并利用卡

尔曼滤波器来估计每个模型的端电压并计算残

差，实现锂离子电池过充和过放故障的诊断 . Wei
等 [11] 设计多个等效电路模型以拟合不同的故障，

并使用强跟踪扩展卡尔曼滤波估计模型电压，与

测量值比较生成残差信号 .  Yang等 [12] 使用分数

阶模型和一阶电阻–电容电路 (Resistor–capacitance
circuit, RC)模型预测电压，并计算电压的均方根误

差，输入随机森林进行故障分类. 基于模型驱动虽

然可以对故障进行定性和定量分析，但其受限于

建模精度和参数不确定性.
基于数据驱动的方法无需考虑电池内部的电

化学机理，具有较高的兼容度和诊断精度. Yao等[13]

用离散余弦滤波去噪，修正协方差矩阵作为状态

指标，用网格搜索优化的支持向量机分类故障，但

是预处理耗时较长，且方法的适应性较差. 贾等 [14]

开发了基于多维特征和混合聚类算法的健康状态

综合评价体系，虽然该类方法的预测精度较高且

适应性较好，但数据样本量大收敛时间长. Li等 [15]

提出了一种结合长短时记忆神经网络和等效电路

模型的电池故障诊断方法，虽然从机理层面增强

了故障诊断的可解释性，但该方法较为复杂. Wang
等 [16] 对径向基函数网络进行改进，能有效诊断锂

离子电池组的故障，但该方法无法对未知的故障

类型进行诊断.
为了校验故障数据的可靠性，并提高数据特

征的提取能力，本文提出一种结合核主成分分析

(Kernel principle component analysis, KPCA)和多尺

度时序卷积网络 (Multi-scale temporal convolutional
network, MTCN)的锂离子电池故障诊断方法 . 首
先使用 KPCA对数据进行降维的同时检测是否存

在故障，然后使用霜冰算法优化 MTCN网络的超

参数 . 基于两组数据验证了本文所提方法的诊断

精度，其中一组数据是电池组发生了过充故障，另

一组数据是电池组发生了未知的故障. 

1    实验数据

本文的 2组故障数据来源于不同的实验平台，

因此分别展开介绍. 

1.1    过充故障数据

过充实验的对象为方形锂离子电池，电池的

正极柱材料为 1060 H14铝合金 ，负极柱材料为

1060 H112铝合金和 Cu T2铜合金，在标准放电工

况下测量的基本参数如表 1所示，标准放电工况

指的是在 25±2 ℃ 环境下，以 0.5P(448 W)恒功率

放电至单体电芯电压上限后，停止放电，并且在下

一个工步开始前静置 30 min.
根据电池说明书的安全操作指导和已有的研
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究结果 [17]，本文的过充实验设置如下： (1)完全充

电：将电池以 1倍标称容量的电流充电至 3.8 V
后，恒压充电至电流下降为 0，静置 1 h后继续补

电，循环此过程直至电池完全充满；(2)解出能量

管理系统的限制，然后施加 5.2 V的充电电压，持

续 200 s后将电压降为 0，此时过充实验结束. 本次

测试用到的实物电池如图 1所示，在测试过程中

持续监测电流、电压和温度数据；(3)正常充电：将

电池以 1倍标称容量的电流充电至 3.8 V后，恒压

充电至电流降为 0，多次重复该过程，并记录电

流、电压和温度数据，作为正常充电状态下的数

据. 将正常充电数据的状态标注为 D0，过充数据的

状态标注为 D1.
 
 

图 1    锂电池过充实验

Fig.1    Lithium battery overcharge experiment
  

1.2    未知故障数据

未知故障数据来源于 100 MW/200 MW·h储能

电站电池管理系统采集的运行数据，一定数量的

电芯串联组成电池模组，若干个电池模组串联组

成电池簇，6～8个电池簇并联组成储能单元. 在储

能电站调试过程中，需要进行多次满充满放实验，

以完成充放电控制策略和实际容量的验证 . 根据

调度的计划，储能电站当天以满功率 100 MW充

电，然后再以满功率 100 MW放电，在此过程中，

电池管理系统采集电芯、电池模组和电池簇的电

压、电流、温度、阻抗等数据，同步计算 SOC、健

康状态 (State  of  health， SOH)、能量状态 (State  of
energy，SOE)等状态，并进行故障预警和诊断 . 由
于采集的数据量较大，为了简化计算以及与过充

故障数据进行对比，从中筛选出可能与电池运行

状态相关的 12个参数，如表 2所示. 共采集到 4组

正常状态下的数据，以及 2组未知故障的数据，每

组包含 5761个数据点 . 将正常状态数据的状态标

注为 F0，未知故障数据的状态标注为 F1.
 
 

表 2    运行状态相关的监测变量

Table 2    Monitoring variables related to operating status

Variables Unit Variables Unit

Main circuit current A Minimum cell temperature ℃

Maximum cell voltage mV Average cell temperature ℃

Minimum cell voltage mV Maximum pole temperature ℃

Average cell voltage mV
Maximum high-pressure box

temperature ℃

Insulation resistance kΩ SOC %

Maximum cell temperature ℃ SOH %

  

2    故障诊断原理
 

2.1    核主成分分析

Cvar

KPCA是一种基于核函数的经典非线性降维

方法，可以有效降低数据的维度和计算量，同时还

能保留数据的重要特征和信息 [18]. 此外，KPCA还

可以对单个数据样本进行故障检测，判断其与正

常数据是否有显著差异，从而保证数据的可靠性[19].
KPCA的基本原理是将原始的低维度数据通过非

线性的方式映射到高维度向量空间 K 中，然后再

对向量空间 K 中的数据使用 PCA降维 . KPCA的

主要求解目标为通过核函数计算高维度向量空间

K 中协方差矩阵的特征值和特征向量. 协方差矩阵

的计算方式如式 (1)所示：

Cvar =
1
n

n∑
j=1

ϕ(x j)ϕ(x j)T （1）

Cvar

式中，n 为原始数据的维度；xj 为第 j 维原始数据；

ϕ 为映射函数.  的特征方程为：

λv = Cvarv （2）

v
v

式中，  λ 为特征值； 为对应的特征向量 . 经过推

导， 可以表达为：

v =
n∑

j=1

α jϕ(x j) （3）

v式中，α 为原始数据点在构成特征向量 时的权重，

可通过对特征方程求解计算. 联立式 (1)、式 (2)和
式 (3)可得：

 

表 1    电池基本参数

Table 1    Essential parameters of the battery

Rated Capacity/(A·h) Rated voltage/V Rated energy/(W·h) Battery weight/kg Battery volume/L Internal resistance/mΩ

280 3.2 896 5.35±0.16 2.55 ≤0.25

谭启鹏等：基于 KPCA-MTCN的锂离子电池故障诊断方法 · 2299 ·



λ

n∑
j=1

α j
[
ϕ(xi),ϕ(x j)

]
=

1
n

n∑
j=1

α j

ϕ(xi),
n∑

k=1

ϕ(xk)

 [ϕ(xk),ϕ(x j)
]
（4）

引入核函数 Ker(xj,xi) = [ϕ(xj), ϕ(xi)]，则可计算

出原始数据在高维向量空间 K 的投影为：

P j =

n∑
j=1

αi
j ·Ker

(
x j, xi
)

（5）

本文中采用的核函数为高斯核函数，带宽为

128−2. 为了判断是否发生故障，计算统计量 T2和

SPE是否超过对应的控制限 . T2统计量是衡量多

变量数据在主成分空间中的变化程度的指标，其

公式为：

T2 = xTnewpΛ−1 pTxnew （6）

Λ−1

p
式中， 为相应特征值的倒数；xnew 为 PCA降维

后的数据； 为主成分矩阵 . SPE统计量是用于衡

量多变量数据在残差空间中的变化程度的指标，

其公式为：

SPE = xTnew
(
1− ppT

)
xnew （7）

将过充实验中的正常数据输入 KPCA模型，

计算 T2和 SPE控制限. 然后从过充故障数据中任

意选取 1000个数据点，通过KPCA计算的 T2和 SPE
均远远超出对应的控制限，如图 2所示，验证了过

充故障数据的可靠性.
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图 2    过充故障 T2和 SPE统计量

Fig.2    Overcharge fault T2 and SPE statistics
 

对未知故障数据采取相同的操作，通过 KPCA
计算的 T2和 SPE也均远远超出其对应的控制限，

如图 3所示，这验证了未知故障数据的可靠性. 

2.2    霜冰算法

霜冰 (RIME)算法是 Su等 [20] 受到自然界中雾

凇的生长现象的启发，在 2023年新提出的一种智

能优化算法. RIME算法通过模拟软雾凇和硬雾凇

的生长过程，构建了一个软雾凇搜索策略和一个

硬雾凇穿刺机制，来实现优化问题的探索和开发 .
同时，该算法还引入了一个正向贪婪选择机制，来

增加种群的多样性，避免陷入局部最优 . RIME算

法通过软雾凇搜索策略更新粒子位置的方式为：

Rnew
i j = Rbest, j+r1 ·cosθ ·β ·

(
h ·
(
Ubi j−Lbi j

)
+Lbi j

)
,r2 < E
（8）

Rnew
i j

R j
best

式中， 为粒子更新后的位置； i 和 j 表示第 i 个
雾凇代理中的第 j 个粒子； 为雾凇种群 R 中最

优雾凇代理的第 j 个粒子； r1 为 (−1,1)的随机数；

θ 为控制粒子移动方向的参数，计算公式如式 (9)
所示；β 为环境因素，会随着迭代次数的变化而变

化，保证算法的收敛性，计算方法如式 (10)所示；

h 为粘附度，是一个范围在 (0,1)的随机数；Ubij 和

Lbij 分别为逃逸空间的上限和下限；r2 为一个范围

在 (0,1)的随机数；E 是粘附系数，影响代理的凝结

率，计算公式如式 (11)所示：

θ = π
t

10T
（9）

式中，t 是当前的迭代次数；T 为最大迭代次数.

β = 1−

[wt
T

]
w

（10）

式中，[]为取整计算；w 的默认值为 5，用来控制阶

跃函数的分段数. 粘附系数 E 计算如下：

E =

√
t
T

（11）

硬雾凇穿刺机制模拟了不同的雾凇代理之间

的交叉，提高了算法的开发能力和跳出局部最优
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的能力. 更新的公式如下：

Rnew
i j = Rbest, j, r3 < Fnormr(S i) （12）

式中，Fnormr(Si)为当前代理的适应度的归一化值，

表示第 i 个雾凇代理被选中的概率；r3 为一个范围

在 (−1,1)的随机数. 

2.3    多尺度时序卷积网络

∈

Bai等 [21] 提出了一种时序卷积网络 (TCN)，能
有效提取时序数据的特征，其由一维扩张因果卷

积层和残差块组成 . 扩张因果卷积层使得输出只

依赖于当前和过去的输入，以指数方式扩大了输

出的感受野，即增加了对历史输入信息的感知能

力. 随着卷积层的增加，TCN能够提取更多的输入

特征，从而提高了输出的性能、稳定性和准确性，同

时降低了计算量. 给定一个滤波器 f：{0, 1,···, k−1}→
R，扩张卷积 F 对一维序列 x Rn 的元素 s 的定义

如下式所示：

F(s) =
(
x∗d f
)
(s) =

k−1∑
i=0

f (i) · xs−d·i （13）

式中，k 为滤波器的大小；d 为扩张因子；*是卷积

运算符. 显然，滤波器大小 k 或扩张因子 d 越大，网

络的感受野越广.
随着深度学习网络层的增加，深度网络可能

会变得饱和，因此仅增加网络层数，其性能不会持

续提高，甚至可能变差. 残差块通过输入和输出的

相加，从而增强了信息的流动和保存，如图 4和公

式 (14)所示，残差块由一个恒等映射和一个残差

函数 f(x)组成：

y = f (x)+ x （14）
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图 4    TCN残差块结构

Fig.4    TCN residual block structure
 

为了进一步增加 TCN的视野，同时能从数据

中深度提取时序特征，降低噪声对数据的干扰，本

文通过并行搭建不同大小的卷积核 [22]，从锂电池

不同维度的运行数据中提取更多尺度的信息，其

结构如图 5所示 . 最后将每个尺度的信息汇总至

一个全连接层，并输入 Softmax层进行加工，最终

通过分类层实现故障的准确分类. 

2.4    故障诊断流程

本文提出的结合 KPCA和 MTCN的故障诊断

方法流程如图 6所示，该方法的主要步骤如下：
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(1)将数据进行归一化处理，并任意从中选出

一组正常数据，训练 KPCA模型；
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(2)将剩余的数据组依次输入到 KPCA模型

中，在降维的同时进行单故障检测，以验证数据的

可靠性，并完成对数据故障类型的标注；

(3)将数据划分为训练集和测试集，基于训练

集对 MTCN模型进行训练，同时使用霜冰算法优

化MTCN网络的超参数，以提高模型精度；

(4)MTCN优化完成后，输入测试集的数据进

行故障诊断，并参考评价指标，对本文所提故障诊

断方法的性能进行评估. 

3    故障诊断结果

为了验证本文所提方法的实际诊断效果，现

分别基于两组故障数据，将 MTCN算法与长短期

记忆神经网络 (Long short term memory, LSTM)、卷

积神经网络 (Convolutional neural network, CNN)算
法 [23]、Xception[24] 和 ResNet50[25] 的诊断精度进行

对比. 

3.1    评价指标

本文选取用于评价故障诊断性能的指标有以

下 4个 [26]：准确率 (Accuracy)、精准率 (Precision)、
召回率 (Recall)和 F1分数 (F1-Score). 其中，准确率

指的是故障分类正确的样本数量之和占总样本数

量的百分比；精准率指的是被分类为故障的样本

中，分类正确样本的比例；召回率指的是实际为故

障的样本中，分类正确样本的比例；F1分数是精准

率和召回率平衡的结果 . 假设为二分类故障，4个

指标的计算方法如下：

Accuracy =
TP+TN

TP+TN+FN+FP
×100% （15）

Precision =
TP

TP+FP
×100% （16）

Recall =
TP

TP+FN
×100% （17）

F1-Score =
2×Precision×Recall
Precision+Recall

（18）

式中，TP为实际 (1)与诊断 (1)相符的样本数量；

FN为实际 (1)与诊断 (0)不相符的样本数量；FP
为实际 (0)与诊断 (1)不相符的样本数量；TN为实

际 (0)与诊断 (0)相符的样本数量. 

3.2    过充故障诊断结果

使用 KPCA确认过充故障数据的可靠性后，

对运行数据进行降维，计算主元贡献率如图 7所

示，从图中可以看到，原始的故障数据仅有 2维，

而第一主成分的贡献率只有 55.13%，第二主成分

的贡献率为 44.87%，因此仍然保留 2维数据.

将标注完成的数据按照 7∶3的比例划分为训

练集和测试集. 在训练阶段，为了进行分类精度对

比，同时使用霜冰算法优化 MTCN、LSTM和 CNN
的超参数，包括最小批数量、残差块层数、卷积核

数量、神经元数量等，目标优化函数为诊断结果的

准确率误差，即用 1−Accuracy. 基于过充故障数

据，使用 RIME算法优化 MTCN的适应度值收敛

曲线如图 8所示，从图中可以看出，RIME在迭代

次数为 20次左右就已经收敛，且适应度值整体较

小，这也从侧面说明MTCN的诊断精度高.
 
 

7.0
×10−3

6.5

6.0

F
it

n
e
s
s
 v

a
lu

e

5.5

5.0
0 10 20 30

MTCN

Number of iterations

40 50
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Fig.8    RIME algorithm convergence process
 

RIME算法优化三种模型超参数的结果如表 3
所示，在程序中按照优化结果设置超参数，运行环

境为：CPU：R7 4800H；内存：16GB ；GPU：GTX 1650
（桌面端），三种算法训练过程中的分类正确率如

图 9所示，从图中可以看出，MTCN的收敛速度最

快，且训练误差波动相对较小.
在测试阶段，将测试集数据输入充分训练的

模型中，MTCN、LSTM、CNN、Xception和 ResNet50
诊断结果对应的评价指标如表 4所示，对应的混

淆矩阵如图 10所示 . 从图 10中可以看出，MTCN
将少部分的过充故障数据错误诊断为正常数据，

但是总体上的诊断正确率比较高 . 从表 4中对两

类数据的诊断结果的差异来看，MTCN对正常数
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据和过充数据的诊断结果的精准率和召回率相

差不大，说明其对两类数据的识别能力较为平衡 .
LSTM和 CNN对正常数据诊断结果的精准率均较

高，而召回率均较低，说明这两种方法对正常数据

的识别能力较强，但是对过充数据的识别能力较

弱 .  Xception和 ResNet50则对两类数据的识别能

力较为接近.
从诊断方法的角度来看，MTCN的 4个评价指

标均显著优于 LSTM和CNN，而CNN稍优于 LSTM.

这说明当数据特征数量比较少时，MTCN能更好

地处理时序数据并捕获长期的历史信息. 此外，从

表 4中的模型预测时间来看，LSTM和 CNN耗费

时间比较接近，而 MTCN的计算时间显然高出一

截，这是因为多个 TCN并行的结构提取特征的能

力更强，同时也带来了更高的计算负荷. 而 Xception
和 ResNet50作为比较新颖的算法，其性能与MTCN
较为接近. 

3.3    未知故障诊断结果

使用 KPCA确认过充故障数据的可靠性后，

对原始的 12维数据进行降维，计算主元贡献率如

图 11所示，从图中可以看到，第一主成分、第二主

成分、第三主成分和第四主成分的累积贡献率为

95.894%，这意味着原始的 12维数据可以用 4维特

征空间表示.
同样将标注完成的数据按照 7∶3的比例划分

为训练集和测试集，并按照与过充故障相同的操

作方式进行超参数的优化 . 随即将测试集数据

输入到充分训练的模型中，MTCN、LSTM、CNN、

Xception和 ResNet50诊断结果对应的评价指标如

 

表 3    过充故障数据超参数优化结果

Table 3    Overcharge fault data hyperparameter optimization results

Network type Hyperparameters Value Hyperparameters Value

MTCN
Minimum batch size 500 Number of filters 21

Number of residual blocks 2 Filter size 2

LSTM
Number of hidden layers 2 Number of neurons 25

Minimum batch size 1000 Drop layer probability 0.1

CNN
Number of convolutional layers 5 Number of convolution kernels 30

Convolution kernel size 2 Drop layer probability 0.1
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图 9    训练过程的分类正确率

Fig.9    Classification accuracy of the training process

 

表 4    过充故障诊断的评价指标

Table 4    Evaluation indicators for overcharge fault diagnosis

Diagnosis method Fault type
Evaluation index

Time/s
Precision/% Recall/% F1 score/% Accuracy/%

MTCN
D0 99.980 98.928 99.452

99.265 0.817
D1 97.834 99.960 98.885

LSTM
D0 97.952 79.801 87.950

82.106 0.457
D1 50.414 92.486 62.256

CNN
D0 98.700 80.540 88.700

82.235 0.434
D1 52.304 95.265 67.531

Xception
D0 99.980 98.813 99.393

99.186 0.828
D1 97.598 99.960 98.764

ResNet50
D0 100.000 98.411 99.199

98.923 0.928
D1 96.770 100.000 98.359
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表 5所示，对应的混淆矩阵如图 12所示 . 从图 12
中的结果来看，MTCN仅将少量的故障数据诊断

为正常状态 . 从表 5中对两类数据的诊断结果的

差异来看，MTCN基本能完全正确诊断故障数据 .
而 LSTM、CNN、Xception和 ResNet50的诊断准确

率也相对较高，但是更易将故障数据分类为正常

数据.
从诊断方法的角度来看，MTCN稍优于 LSTM

和 CNN，而 CNN仍然优于 LSTM. 但是相较于过

充故障数据，CNN和 LSTM的准确率均有显著的

上升，这是由于增加数据的维度有利于 LSTM和

CNN提取更多的信息 . 对比表 4和表 5的模型计

算时间可以看出，表 5中所有模型的时间均短于

表 4，这是由于未知故障的总数据量要少于过充故

障，在同样的划分比例下，在测试阶段需要进行故

障诊断的数据量更少. 

3.4    训练数据量的影响

为了分析并比较训练数据量对分类精度的影

响，按照不同的比例划分训练集和测试集，三种模

型对应的诊断结果如表 6所示 . 从表中可以看出，

对于两类数据而言，随着比例的增大，即训练数据

量的增加，三种模型均呈现由欠拟合到中间状态

再到过拟合的趋势，综合几种模型的诊断准确率

考虑，本文以 7∶3的比例重点研究并对比了三种

模型的分类效果.
此外，无论是过充故障还是未知故障，在不同

的比例下 MTCN、Xception和 ResNet50的诊断准

确率均非常高，这也验证了 MTCN用于锂电池故

障诊断时具有较强的泛化能力，可以适应不同类

型和程度的锂电池故障.
尽管目前的研究已经通过现有数据充分验证

了 MTCN在锂电池过充故障和未知故障诊断中的

高准确率，表明了 MTCN模型在故障诊断方面的

强大潜力，但受限于数据类型和数量的有限性，特

别是对于多种故障类型的效果评估，因缺乏相应

的数据集而尚未进行测试. 
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图 11    未知故障主元贡献率

Fig.11    Main element contribution rate of unknown fault

 

表 5    未知故障诊断的评价指标

Table 5    Evaluation indicators for unknown fault diagnosis

Diagnosis method Fault type
Evaluation index

Time/s
Precision/% Recall/% F1 score/% Precision/%

MTCN
F0 100 99.577 99.788

99.688 0.806
F1 98.817 100 99.405

LSTM
F0 92.786 100 96.258

94.690 0.394
F1 100 83.251 90.860

CNN
F0 96.258 100 98.093

97.245 0.387
F1 100 90.550 95.041

Xception
F0 99.036 100 99.515

99.290 0.777
F1 100 97.381 98.673

ResNet50
F0 99.151 99.942 99.545

99.333 0.836
F1 99.839 97.684 98.750
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4    结论

本文提出了一种结合 KPCA和 MTCN的锂电

池故障诊断方法，并使用 RIME算法优化 MTCN
的超参数，最后基于 2组故障数据分别进行了验

证，结果表明：

(1)通过 KPCA计算 T2统计量和 SPE统计量，

并与相应的阈值比较，可以判定单维故障，验证了

数据的可靠性 . 同时，KPCA也可以在保留主要信

息的前提下，对原始数据进行降维；

(2)对于过充故障和未知故障两组数据，相比

于 LSTM和CNN，MTCN均有显著的优势，其诊断准

确率分别为 99.265% 和 99.688%，而 MTCN与 Xce-
ption和 ResNet50的性能则比较接近；

(3)按照不同的比例划分训练集和测试集 ，

MTCN故障诊断准确率均非常高，说明了 MTCN
用于锂电池故障诊断时具有较强的泛化能力.
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