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ABSTRACT The production splitting coefficient is a key parameter for predicting gas production and reserves, evaluating gas
recovery efficiency, and guiding the optimization of well patterns in multilayer commingled gas reservoirs. Therefore, developing a
reliable splitting method to calculate this coefficient is critical for the development of multilayered commingled gas reservoirs. The gas
drainage radius emerges as a key parameter in determining the production splitting coefficient grounded in the physical concept of
production splitting. This coefficient is influenced by several factors—such as the wellbore radius, production layer thickness, porosity,
initial gas saturation, gas deviation coefficient, reservoir temperature, gas drainage radius, and average formation pressure. Usually,
calculating the gas drainage radius and average formation pressure cannot be performed in actual applications. Combining the gas well
deliverability and material balance equations forms a closed-loop model for calculating the production splitting coefficient. This model
features three equations with three unknowns—gas drainage radius, average formation pressure, and the production splitting coefficient.

It introduces a double-cycle calculation method to solve the model. Specifically, the internal cycle computes the gas drainage radius,
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whereas the external cycle determines the production splitting coefficient, each offering unique solutions and employing alternating
forward recursion and reverse recursion rules. The establishment of a double-cycle calculation process—defined by specific cycle step
sizes and an error threshold—ensures that the external cycle progresses only upon the convergence of the internal cycle. Moreover, it
determines whether the internal cycle can converge. Numerical simulations demonstrate that the production splitting coefficient exhibits
different patterns across different production stage layers, highlighting the accuracy and mechanism soundness of the double-cycle
method compared with direct numerical simulations. Moreover, it has good feasibility in field application because it can calculate the
production splitting coefficient even without known values for gas drainage radius. Comparing gas-producing profiles indicates that the
dual-cycle calculation method has reliable accuracy in field applications when the gas drainage radius and average formation pressure are
unknown. Ultimately, the double-cycle calculation method offers a comprehensive solution for a three-element equation system,
enabling simultaneous estimations of the production splitting coefficient, gas drainage radius, and average formation pressure.

KEY WORDS multilayer commingled production; production splitting; gas drainage radius; internal cycle; external cycle; double-

cycle; numerical simulation; gas-producing profile
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—-The internal cycle is forward recursion
—-The internal cycle is reverse recursion
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Table 1 Numerical simulation parameters

Value
Parameters
Layer 1 Layer 2 Layer 3
Grid type radial direction radial direction radial direction
Grid step size/m 10 10 10
Grid angle/(°) 11.25 11.25 11.25
ry/m 0.2 0.2 0.2
Pps/MPa 0.101 0.101 0.101
T, /K 293.15 293.15 293.15
Syij 0.60 0.65 0.70
ri/m 300 600 900
Zy 0.995128799 0.989285975 0.989890012
pi/MPa 21.0 22.0 235
Z 0.853320944 0.93845948 0.97120549
T/K 361.81 363.83 366.06
h;/m 6 8 10
4 0.060 0.065 0.070
K;/mD 0.09 0.12 0.20
G/m’ 11614700 70724200 236805000
Vg 0.59 0.60 0.61
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—— Bottomhole flowing pressure (layer 1)

- Bottomhole flowing pressure (layer 2)
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Table 2 Numerical simulation ¢ ; versus double cycle © ;

Internal cycle (the last time) External cycle (the last time) Numerical
Double . . Relative
Layer #/d Relati Relati cycle ¢ /% simulation error/%
r” rgt erer(?r;:/: Circlerules o B/9% o E/% ererjr;;re Circle rules / /%
1 29936 299.36 0.000 Forward ~ 12-8668 12.8640 0.022 Reverse 12.8668  12.8562 0.082
10 298.98 29898 0.000 recursion 13 1615 13.1490 0.095 recursion 13.1615  13.1468 0.111
100 296.70 296.72 0.007 11.8622 11.8588 0.029 11.8622  11.7863 0.644
200 299.10 299.09 0.003 11.5320 11.5371 0.044 11.5320  11.4035 1.127
300 300.83 300.84  0.003 113270  11.3239 0.027 11.3270  11.1387 1.691
400 301.00 301.01 0.003 11.0940 11.0939 0.001 11.0940  10.8408 2336
Layer 1
500 30220 302.22 0.007 10.8550  10.8477 0.067 10.8550  10.5041 3.341
Reverse Forward
600 305.06 305.06 0.000 recursion  10.6410 10.6335 0.071 recursion 10.6410  10.1490 4.848
700 305.83 305.84  0.003 10.3990  10.3993 0.003 103990  9.7928 6.190
800 307.94 307.95 0.003 10.1960  10.1980 0.020 10.1960  9.4466 7.933
900 31044 310.45 0.003 10.0200 10.0185 0.015 10.0200  9.1153 9.925
1000 314.32 314.32 0.000 9.8940 9.8939% 0.001 9.8940 8.8030 12.394
1 600.05 599.99 0.010 27.9297 27.9059 0.085 27.9297  27.9302 0.002
10 600.05 600.04  0.002 27.6500 27.6606 0.038 27.6500  27.6496 0.001
Forward Reverse
100 602.70 602.73 0.005 recursion  26.1830 26.1816 0.005 recursion  26.1830  26.1771 0.023
200 599.50 599.54  0.007 25.8610 25.8775 0.064 258610  25.8288 0.125
300 602.30 602.35 0.008 25.7310 25.7492 0.071 257310  25.6879 0.168
400 601.10 601.08 0.003 25.6870 25.6840 0.012 25.6870  25.6373 0.194
Layer 2
4 500  602.70 602.73 0.005 25.6900 25.7053 0.060 25.6900  25.6284 0.241
600 608.39 608.34  0.008 25.7360 25.7111 0.097 257360  25.6370 0.386
Reverse Forward
700  601.20 601.16 0.007 recursion 257070 25.7094 0.009 recursion 257070  25.6517 0.216
800 59470 594.64  0.010 25.6540 25.6604 0.025 25.6540  25.6651 0.043
900  600.95 600.98 0.005 25.7200 25.7042 0.061 257200  25.6755 0.173
1000 610.66 610.61 0.008 25.8362 258111 0.097 258362  25.6819 0.601
1 90025 900.28 0.003 59.2083 59.2075 0.001 59.2083  59.2136 0.009
10 899.30 899.24  0.007 59.2140 59.1886 0.043 592140  59.2036 0.018
100 900.95 901.01 0.007 Forward 61 9940 62.0071 0.021 Reverse 61.9940  62.0366 0.069
recursion recursion
200 898.30 898.38 0.009 62.7200 62.7438 0.038 62.7200  62.7677 0.076
300 912.60 912.66 0.007 63.0650 63.0681 0.005 63.0650  63.1734 0.172
400  899.90 899.90 0.000 63.4241 63.4741 0.079 63.4241  63.5219 0.154
Layer 3
Y 500 886.00 886.03 0.003 63.7062  63.7240 0.028 63.7062  63.8675 0.253
600 899.00 899.02 0.002 64.0540  63.9973 0.089 64.0540  64.2140 0.249
700  891.50 891.55 0.006 Reverse 643030 64.2678 0.055 Forward 64.3030  64.5555 0.391
recursion recursion
800  909.30 909.32 0.002 64.7400 64.7570 0.026 64.7400  64.8883 0.229
900 902.60 902.55 0.006 64.9580 65.0199 0.095 64.9580  65.2092 0.385
1000 893.99 894.02 0.003 65.1040  65.1685 0.099 65.1040  65.5151 0.627

FE R A L RGE A, SR RS Oy 1758 d R R BOHEROR, HEEIRUER o, 3 ry BB (0)
1761 d HE4FBIHEAT T Fo SR B, P S AT T, i T E AR PVT SR, ORI =2
BOL R 4, 48 SRR FAE A, RIS RN T IR PVT Belin: R btk i s, Bexte o fie
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Table 3 Numerical simulations ¢ versus double cycle ¢

R4 REIISEER

Table 4 Parameters of gas production profile

¢ /% Absolute error/%

7d Numerical Double

simulation cycle

1 100.0000 100.0048  0.0048 0.0106 —0.0005 —0.0053

Gas well Layer1 Layer2 Layer3

10 100.0000 100.0255  0.0255 0.0147 0.0004 0.0104
100 100.0000 100.0392  0.0392 0.0759 0.0059 —0.0426
200 100.0000 100.1130  0.1130  0.1285 0.0322 —0.0477
300 100.0000 100.1230  0.1230 0.1883  0.0431 —0.1084
400  100.0000 100.2051  0.2051  0.2532  0.0497 —0.0978
500 100.0000 100.2512  0.2512 0.3509 0.0616 —0.1613
600 100.0000 100.4310 0.4310 0.4920 0.0990 —0.1600
700 100.0000 100.4090  0.4090 0.6062 0.0553 —0.2525
800 100.0000 100.5900  0.5900 0.7494 —0.0111 —0.1483
900 100.0000 100.6980  0.6980 0.9047 0.0445 —0.2512
1000  100.0000 100.8342  0.8342 1.0910 0.1543 —-0.4111
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Fig.8 Numerical simulations © ; versus double cycle ©
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Value
Parameters
Layer 1 Layer 2 Layer 3
ry/m 0.121 0.121 0.121
Seij 0.692 0.580 0.716
Zy 1.017 1.017 1.017
pi/MPa 19.759 19.818 20.325
Z 0.952866432 0.95313965 0.95560225
T/K 358.457 361.061 362.692
h/m 9.8 1.8 6.6
¢, 0.072 0.062 0.054
K;/mD 0.205 0.110 0.132
t/d 1758 (1761)
gse(D/(m’-d ™) 12334.2 (6736.2)
G,(f/m’ 21126600 (21174000)
Pwi()/MPa 8.834(8.803)  9.047(9.016)  9.270 (9.239)
Pyt + 1)/MPa 8.828 (8.800)  9.041(9.013)  9.264 (9.235)
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Table 5 Application and prediction results

Value
Parameters
Layer 1 Layer 2 Layer 3
t/d 1758 (1761)

Gas production profile ¢ ;/%
Double cycle ¢ /%
Absolute value of relative error/%
re/m

P(1)/MPa

51.8866 (52.6350)
53.3100 (53.9200)
2.74 (2.44)
309.13 (294.99)
11.07 (10.09)

1.0742 (0.5077) 47.0391 (46.8573)

1.1650 (0.5500) 45.5250 (45.5300)

8.45 (8.33)
101.32 (80.83)

3.22(2.83)
448.89 (398.65)

9.33 (9.11) 13.51 (11.67)
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