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ABSTRACT Starting from the micro/macro dynamics of seepage behavior, stress-sensitive experiments are conducted to investigate
the fluid—solid coupling and fluid flow law in shale gas reservoirs. These experiments elucidate the interaction between micro and
macroscopic effective stress based on the dynamic behavior of seepage. By applying the principle of effective stress, a nonlinear seepage
mathematical model for matrix—fracture porosity and permeability in shale reservoirs is established, considering multi-scale fluid-solid
coupling effects such as slip diffusion, desorption, gas flow, and shale deformation. Based on the multi-zone coupled seepage physical
model of a shale gas reservoir, a fluid—solid coupling productivity model for shale gas horizontal wells is established. This model
considers the impact of reservoir deformation on shale matrix—fracture porosity and permeability. Additionally, it reveals the nonlinear
seepage law of multistage fractured horizontal wells and analyzes factors influencing productivity. Stress sensitivity experiments on
matrix rock samples and fracture rock samples indicate that the stress sensitivity of matrix rock samples is stronger than that of fracture
rock samples. The research shows that cumulative gas production, accounting for the influence of fluid—solid coupling on shale gas

seepage, differs by approximately 14% compared to when it is not considered. The difference is mainly attributed to the fluid—solid
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coupling in the fracture network of the reconstruction area. Analyzing fluid—solid coupling parameters reveals that larger elastic modulus

results in stronger resistance to deformation, leading to a weaker fluid—solid coupling effect and decreased gas production. Shale skeleton

shrinkage deformation during desorption makes the fluid—solid coupling effect more pronounced, though it slightly reduces gas

production. Higher Poisson’s ratio and Biot coefficient increase the deformation sensitivity of the shale reservoir and decrease the

resistance to deformation in the fracture network zone, resulting in a more significant fluid—solid coupling effect and decreased gas

production. As initial porosity increases, the absolute value of the fluid—solid coupling stress sensitivity coefficient decreases gradually,

significantly enhancing the fluid—solid coupling effect characterized by the permeability model. The simulation results of the model align

with actual field data, showing that gas production follows an “ L-shaped” decline pattern with a coincidence rate exceeding 70%,

verifying the model’s accuracy.

KEY WORDS shale gas; multi-scale; flow; permeability; fluid—solid coupling
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Fig.1 Relationship between permeability and effective stress: (a) matrix samples; (b) fracture samples
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Table 2 Basic parameters for shale gas reservoir simulations
Basic parameter (matrix) Numerical value Basic parameter (fracture network) Numerical value
Initial porosity, ¢mo 0.05 Initial porosity, ¢ 0.02
Initial permeability, K,,¢/(10~> um?) 0.0005 Initial permeability, Kp/(107° pm?) 500
Elastic modulus, E,,/(10° Pa) 15 Elastic modulus, E,/(10° Pa) 30
Biot coefficient, 5, 0.3 Biot coefficient, f; 0.8
Biot coefficient of pores, £, 0.4 Normal stiffness/(10° Pa) 100
Poisson’s ratio, vy, 0.25 Poisson’s ratio, v¢ 0.15
L p— Without fluid-solid coupling 0.04 20 ) . . 0.04
---------- Fluid-solid coupling in unmodified area — Without fluid-solid
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Fig.6 Influence of Poisson’s ratio on gas production
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Fig.8 Influence of initial porosity of fracture network on gas production
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Table 3 Fracturing production parameters for horizontal wells

Well Number of fracturing Average Poduction
name sections spacing/m time/d
CHI1 19 71.52 551
CH2 21 69.40 562
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Table 4 Fluid solid coupling fitting data for shale gas reservoirs
Initial porosity Elastic modulus/(10° Pa) Biot coefficient Poisson’s ratio
Well name
Matrix Fracture network Matrix Fracture network Matrix Fracture network Matrix Fracture network
CH1 0.05 0.02 12 20 0.35 0.90 0.20 0.13
CH2 0.05 0.02 12 23 0.3 0.70 0.21 0.12
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Fig.9 Production data and production capacity model fitting curve of CH1 well: (a) fitting curve; (b) prediction curve
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