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摘    要    井工开采爆破作业的常规振动监测易受周围环境或监测系统影响，使煤岩破裂信号提取困难，本文提出一种基于电

磁信号的爆破监测方法，并研究了爆破电磁信号时频特征. 首先，提出了基于蜣螂优化算法（DBO）寻优变分模态分解（VMD）

参数的降噪模型，得到了此类信号的最佳适应度函数为包络熵，该函数可迅速锁定最优参数组合，避免模态混叠现象，且基

于 DBO-VMD的降噪模型性能优于基于经验模态分解（EMD）的降噪模型；其次，提出了基于经验法的中心频率准则降噪方

法，并证实了该方法降噪性能在信噪比表现上约是 EMD的 2倍；最后，发现煤岩破裂期的偏度大于 0、峭度介于 0.9～4.6，脉

冲指标介于 3.7～6.1，频段在 20 kHz以下，主破裂事件发生时信号能量最大，主频段在 5 kHz以下，并随着频率上升信号分量

幅值迅速下降，非破裂期的低能脉冲则集中于 0～3 kHz频段. 本文的研究结果明确了爆破电磁辐射信号的时‒频特征，为井

工开采过程中爆破的电磁辐射监测奠定了理论基础.

关键词    井下爆破；电磁辐射；蜣螂优化算法；变分模态分解；特征分析
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ABSTRACT    In shaft mining, conventional vibration monitoring of blasting operations is often affected by environmental factors and

system limitations,  complicating  the  extraction  of  coal–rock  rupture  signals.  This  paper  explores  the  use  of  electromagnetic  radiation

signals for blasting monitoring, introducing a noise reduction method for these signals and examining the time–frequency characteristics

of the pure signals. Initially, the paper suggests using the dung beetle optimizer (DBO) algorithm to dynamically adjust the parameters of

variational  mode  decomposition  (VMD)  for  the  efficient  acquisition  of  optimal  decomposition  parameters  [k,  α].  By  analyzing

electromagnetic  signal  optimization  sunder  different  fitness  functions  and  evaluating  three  types  of  anomalies,  namely  repeated

mutations, boundary stabilization, and unchanged states, we find that the performance of the DBO-VMD model in processing coal–rock

electromagnetic  signals  ranks  as  follows:  envelope  entropy  >  ranking  entropy  >  information  entropy  >  sample  entropy.  Α  center-

frequency  criterion  noise  reduction  model  is  proposed  to  eliminate  high-,  intermediate-,  and  low-intensity  components  in  the  signal.

When  comparing  electromagnetic  signals  processed  by  the  DBO-VMD  and  empirical  mode  decomposition  (EMD),  the  DBO-VMD 
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effectively  avoids  modal  aliasing  and  provides  more  reasonable  center-frequency  distributions.  After  applying  a  consistent  noise

reduction process, the DBO-VMD model shows superior performance over EMD. It provides enhanced smoothing and fidelity of pure

signals  and  is  more  efficient  at  noise  screening.  The  DBO-VMD  achieves  a  signal-to-noise  ratio  about  two  times  that  of  the  EMD.

Finally,  we  conducted  a  statistical  analysis  of  the  entropy,  energy,  bispectrum,  and  time–frequency  domain  characteristics  of  pure

electromagnetic  signals  associated  with  coal–rock  ruptures.  During  stable  periods,  information  entropy,  instantaneous  energy,  and

marginal energy remain below specific thresholds, but they exhibit sudden changes during rupture events. Rupture periods begin when

information entropy falls below 4.75, instantaneous energy exceeds 1000 J, or marginal energy surpasses 100 J, based on a 50-point time

window.  Conversely,  the  conclusion  of  the  rupture  period  corresponds  to  opposite  conditions,  with  marginal  energy  responding  more

sensitively to rupture states than instantaneous energy. During ruptures, skewness is positive, steepness ranges from 0.9 to 4.6, and pulse

index varies from 3.7 to 6.1, all within a frequency band below 20 kHz. Main rupture events coincide with peak signal energy, mostly

under  5  kHz.  As  frequency  increases,  signal  amplitude  decreases  rapidly,  with  low-energy  pulses  during  non-rupture  periods

concentrated  in  the  0–3  kHz  range.  This  study  sheds  light  on  the  time–frequency  characteristics  of  electromagnetic  radiation  signals

generated by blasting. These insights lay the groundwater for effectively monitoring such signals in underground mining operations.

KEY WORDS    underground blasting；electromagnetic radiation；dung beetle optimization algorithm；variational mode decomposition；

feature analysis

在矿井井工开采、隧道施工过程中，为提高生

产效率常常使用毫秒雷管进行爆破作业，但同时

会不可避免地产生飞石、振动等负面影响，对生产

安全造成威胁[1−2]. 因此，应重视对爆破作业过程的

监测 . 目前常用的爆破监测方法主要基于振动 [3]、

应变 [4] 等参量，监测过程中接收到的信号纵横波

混杂，干扰较大[5]，难以精确提取煤岩破裂信号. 电
磁辐射法被广泛应用于煤岩破裂监测 [6]、地震预

警 [7] 等研究领域，具有非接触、无损、实时监测的

特点[8]. 目前对于煤岩破裂电磁辐射信号的研究多

是基于实验室的压缩、剪切等实验方式开展 [9−10]，

对井下煤岩爆破信号研究较少 . 此类信号具有噪

音大、爆破瞬间强度大等特点 [11−12]，对干扰信号进

行有效处理是研究信号特征的前提.
以往学者通过经验模态分解（EMD） [13]、小波

变化 [14]、变分模态分解（VMD） [15] 等方法进行信号

降噪，取得了一定的成果. 但经验模态分解易造成

模态混叠，不易得到最优分层；基于小波分析的基

函数不易确定，会导致局部信号的适应性不足；变

分模态分解方法适用于最低频率的强信号提取，

可避免模态混叠现象 ，但分解时指定的分层数

k 及二次惩罚因子 α 等参数对分解效果影响很大 .
爆破造成的煤岩破裂是大尺度的，破裂形式不同

于实验室细观尺度，激发的电磁信号特征也不同，

且此类信号的降噪方法研究不足. 因此，提出有效

的煤岩爆破电磁信号处理方法及揭示信号特征对

爆破扰动的监测具有重要意义[16].
基于此，本文提出利用群体智能算法的蜣螂

优化算法（DBO）不断调整 VMD模型参数使得目

标函数值最小化 [17]，实现高效获得最优分解参数

k 及 α，并基于中心频率准则提出抗干扰信号降噪

模型，研究其最佳适应度函数，并与 EMD降噪模

型的过程及效果进行对比分析，论证了 DBO-VMD
滤波模型的优越性，最后分析了降噪信号的熵、能

量、双谱、时频域指标特征，为建立井下现场煤岩

爆破电磁信号中破裂事件的特征数据库及信号识

别等技术创新提供理论依据与数据基础. 

1    DBO-VMD降噪方法
 

1.1    DBO-VMD优化方法

VMD算法可将信号分解成 k 个 IMF（Intrinsic
mode function）分量 [18]，其参数 k 影响瞬时频率的

估计，不恰当的取值将导致模态混叠现象，参数

α 为二次惩罚因子，影响 IMF带宽，二者对 VMD
分解效果影响较大. DBO算法 [19] 通过模仿不同类

型蜣螂行为实现指定区域中的最优值选择，具有

多样性、高精度、收敛快、稳定性强等特点 [20]. 为
解决 VMD分解参数 k 及 α 难以确定的问题，引入

DBO算法对（k，α）区域进行最佳位置寻优，具体流

程如图 1所示.
不同种类的熵 [21−23] 可反映信号的不同特性，

当信号中噪声较多时熵值较大，反之则较小. 本文

分别采用了包络熵、样本熵、信息熵和排列熵进

行最佳适应度函数分析.
包络熵可反映信号的稀疏特性，计算方法如

式（1）所示：
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E = −
N∑

t=1

pt lg pt （1）

其中，E 为零均值信号的最小包络熵，N 为信号的

采样个数，pt 为信号经 Hilbert变换后的包络幅值.
信息熵可反映整个信号的不确定程度，计算

方法如式（2）所示：

I = −
N∑

i=1

pi lg pi （2）

其中，I 为信号的最小信息熵，pi 为信号对应的概

率分布.
排列熵可反映信号的复杂程度，计算方法如

式（3）所示： 
P = −

L∑
j=1

P j ln P j

L ⩽ n!

（3）

其中，P 为信号的排列熵，n 为嵌入维数，L 为连续

n 维子空间的符号概率分布种数，Pj 为信号出现的

概率.
样本熵可测量信号出现新模式的概率，并反

映其复杂性，计算如式（4）所示：

S (m,r,N) = −ln
[

Am(r)
Bm(r)

]
Bm(r) =

1
N −m

N−m∑
b=1

Bm
b (r)

Am(r) =
1

N −m

N−m∑
a=1

Am
a (r)

（4）

其中，S 为信号的样本熵，m 为信号样本所组成向

量的维数，r 为设定的信号样本距离， Bm(r)是两个

序列在相似容限下匹配 m 个点的概率，Am(r)是两

个序列匹配 m+1个点的概率. 

1.2    电磁信号降噪流程及特征指标

DBO-VMD降噪模型中需要提前设定好种群

规模、目标适应度函数及（k，α）的寻优范围，然后

将染噪原始信号输入获得最优（k，α）组合，将得到

的 IMF按照中心频率准则筛选并重构得到降噪信

号，具体如图 2所示，发现煤岩爆破电磁信号的 IMF
数量一般为 10个以下.

爆破期煤岩破裂信号具有低频高强度特征，

破裂期较长的信号 IMF数量有所上升，但 DBO-
VMD分解法获得的 IMF频率范围与强度范围有

较好的对应性，可分为高频‒低强度、中频‒中强

度、低频‒高强度，在 IMF数量异常较多时，中频

率范围内噪音分量难以判别，此时综合参考环境

噪音主频带、中心频率、幅值及波形，采用经验法

去除高频低强度与中频低强度分量. 最后，基于时

间窗理念研究降噪信号的熵与能量特征、双谱特

征、时频域指标，总结井下现场煤岩爆破电磁辐射

信号的特征及指标. 

2    DBO优化 VMD参数最佳适应度函数
选择
 

2.1    信号采集方案

KBF-B01电磁辐射信号采集系统主要包括采

集仪、天线等. 通过对山东某矿工作面轨道顺槽放

炮现场进行信号收集，并用于信号的通用特征分

析，监测点设在附近无断层、火成岩等地质区 . 基
本顶为黑色泥岩，硬度系数为 3～4，直接顶板以细

砂岩为主，硬度系数为 7～8，基本底为强度高的粉

细砂岩，硬度系数为 6～8，直接底为泥岩，硬度系

数为 3～4，所在煤层以亮煤为主，埋深约为‒860 m，

单轴抗压强度 9.57 MPa，倾角为 1.0°～16.7°，平均

为 7.8°，厚度为 7.3 m，普氏系数为 0.8～2.3，平均为

1.6，呈块状结构，质地坚硬且均匀. 天线单点布置，

采点距放炮位置水平距离为 30 m，高差为 2 m，天

线距巷道煤壁 1 m，采样频率为 250 kHz，每次爆破

装药量 2 kg，如图 3所示. 

2.2    信号来源

按照上述方案进行信号采集时，应规避天线

附近的照明灯、通电线圈等干扰源影响. 采集到的

典型原始信号包含了煤岩体破裂的全过程，如图 4
所示.

 

Begin

Selected fitness function

Calculate target entropy value

Updating various group locations

No

Maintain(k, α) Renewal(k, α)

Yes

Yes

Enter the optimum(k, α)

End

No

The entropy

becomes smaller

Reach

maximum number of

iterations
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Fig.1    DBO-VMD optimization process
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由图 4可知，井下放炮时煤岩破裂事件发生期

较短，信号幅值衰减较快. 具体而言，样本 1～3的

破裂期分别约为 0.6、2.5、0.5 ms，其时间短、强度

高，非破裂期信号幅值则不超过 200 mV，较为稳

定. 其中，样本 2破裂期较长，且脉冲逐次降低，主

要原因为爆破包含多个破裂事件，导致激发的电

磁辐射信号持续时间也较长. 

2.3    不同目标函数性能分析

在 DBO算法优化 VMD时，为保证算法效率

及精度，种群数应不低于 25个 . 为避免陷入早熟

收敛，采用迭代 20次的策略解决局部最优解问
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题，提升稳定性. VMD算法作为被优化的对象，其

种群个体自身属性 k、α 依据目标熵函数行动，设

置 k∈[3, 30]、α∈[100, 3000]即可有效覆盖井下放

炮电磁信号所分解的 IMF范围 . 此外，种群数、k、
α 的范围变化主要影响单次寻优时长，迭代数则影

响整体时长，对单次迭代结果无影响 . 因此，对于

上述参数的改变，倘若将其范围设置的更大，结果

则无较大差异；若将其范围设置的更小，则可能无

法满足 DBO算法或放炮电磁信号分解的需要.
在上述参数下分别使用 4种熵函数作为适应

度函数，寻优过程如图 5～图 7所示 . 由图 5可知，

寻优过程中熵值随迭代次数增加均逐步减小 . 其
中，包络熵为适应度函数时，收敛顺利、无异常波

动，其余 3种函数则分别出现被优化参数大幅度

波动、无变化及达到寻优边界的异常情况，过程不

顺利的主要原因是信号短时间内突变具有不确定

性、随机性强、一致性差的特点. 此外，信号 2和信

号 3的不同适应度函数寻优结果如图 6～图 7所示.
由上可知，DBO优化 VMD时，采用不同适应

度函数的寻优性能有所差异，但整体上可快速锁

定参数最优值 . 为探究不同适应度函数的寻优性

能，对迭代过程的异常次数进行统计，其异常情况

分为参数 α、k 在迭代中反复突变、停留边界或保

持不变，并在图 5～图 7中标记，参数寻优结果如

表 1所示.
综上，DBO优化 VMD时，采用包络熵性能最

优，故（k，α）参数采用其结果 . 其中，原始信号 2分

解层数 k 为 21较为异常，但其 α 相对较小，主要原

因为该信号破裂期较长，波形相对复杂，脉冲数也

较多，信号稀疏性更复杂，而 DBO通过减小 IMF
带宽及增大分解层数实现了最小熵值的寻优，体

现了其策略的多样性. 

3    包络熵为适应度函数的 DBO-VMD滤
波性能
 

3.1    信号本征模函数

为检验该模型针对煤岩爆破电磁信号的降噪

性能，分析中加入基于 EMD的信号分解方法，并采

用同样的降噪流程对 IMF进行处理. 其中原始信号

2的 VMD分解参数较为异常，故截取 VMD-IMF
波形变化较大的 2.5～6 ms时段，并采用傅里叶变

换法计算 IMF的中心频率，结果如图 8所示，其中

A 与 f 分别为 IMF的最大幅值与中心频率.
由图 8(a)～图 8(c)可知，原始信号 2成分复

 

4.596

600

450

300

7
k

7

6

k

E

α

α

318

4.5914

4.594

4.592

(a)

O
p
ti

m
al

 e
n
tr

o
p
y
/(

J·
K

−1
)

0 4 8 12 16 20

Iterations/times

456
240

220

200

180

160

k

4

3

2

k

I

α

α

452

448

444

(c)

O
p
ti

m
al

 e
n
tr

o
p
y
/(

1
0
−3

 J
·K

−1
)

0 4 8 12 16 20

Iterations/times

Unchanged

0.43

0.42

0.41

0.40

0.39

1000

30

28

26

24

800

600

k

kP

α
α

(b)

O
p
ti

m
al

 e
n
tr

o
p
y
/(

J·
K

−1
)

0 4 8 12 16 20

Iterations/times

Large fluctuations

3.50

3.25

3.00

2.75

2.50

3000

2700

2400

2100

27

24

21

k

k

S

α α

(d)

O
p
ti

m
al

 e
n
tr

o
p
y
/(

1
0
−3

 J
·K

−1
)

0 4 8 12 16 20

Iterations/times

Reaching the boundary

图 5    原始信号 1寻优参数收敛图. (a) 包络熵; (b) 排列熵; (c)信息熵; (d) 样本熵

Fig.5    Signal 1 [k,α] optimization convergence plots: (a) envelope entropy; (b) permutation entropy; (c) information entropy; (d) sample entropy

王立涛等：基于 DBO-VMD滤波的煤岩爆破电磁信号时-频特征 · 445 ·



 

5.700

5.698

5.696

5.694

5.692

1600

1200

800

400

0

k

26

24

22

20

18

k

E

α α

21

200

5.6928

(a)

O
p
ti

m
al

 e
n
tr

o
p
y
/(

J·
K

−1
)

0 4 8 12 16 20

Iterations/times

972

966

960

954

1600

2000

1200

800

k

30

24

18

12

k
I

α

α
(c)

O
p
ti

m
al

 e
n
tr

o
p
y
/(

1
0
−3

 J
·K

−1
)

0 4 8 12 16 20

Iterations/times

Large fluctuations

444.9

444.8

444.7

444.6

2800

2600

2400

2200

k
22

20

18

k

P

α

α

(b)

O
p
ti

m
al

 e
n
tr

o
p
y
/(

1
0
−3

 J
·K

−1
)

0 4 8 12 16 20

Iterations/times

Unchanged

12

9

6

3

−3

0

−6

1200

800

400

k

30

29

28

k

S

α

α

(d)

O
p
ti

m
al

 e
n
tr

o
p
y
/(

1
0
−3

 J
·K

−1
)

0 4 8 12 16 20

Iterations/times

Large fluctuations

Reaching the boundary

图 6    原始信号 2寻优参数收敛图. (a) 包络熵; (b) 排列熵; (c)信息熵; (d) 样本熵

Fig.6    Signal 2 [k,α] optimization convergence plots: (a) envelope entropy; (b) permutation entropy; (c) information entropy; (d) sample entropy

 

5.540

5.535

5.530

5.525

5.520

2250

1500

750

0

k

16

20

12

8

k

E

α α

5.5205

7

1926

(a)

O
p
ti

m
al

 e
n
tr

o
p
y
/(

J·
K

−1
)

0 4 8 12 16 20

Iterations/times

1.120

1.125

1.130

1.135
1500

1000

500

0

k

12

10

8

k

I

α

α

(c)

O
p
ti

m
al

 e
n
tr

o
p
y
/(

J·
K

−1
)

0 4 8 12 16 20

Iterations/times

Unchanged

452

450

448

300

200

100

k

27

24

30

k
P

α α

(b)

O
p
ti

m
al

 e
n
tr

o
p
y
/(

1
0
−3

 J
·K

−1
)

0 4 8 12 16 20

Iterations/times

40

20

30

10

3000

2700

2400

2100

k
28

27

29

30

k

S

α

α

(d)

O
p
ti

m
al

 e
n
tr

o
p
y
/(

1
0
−3

 J
·K

−1
)

0 4 8 12 16 20

Iterations/times

Unchanged

图 7    原始信号 3寻优参数收敛图. (a) 包络熵; (b) 排列熵; (c) 信息熵; (d) 样本熵

Fig.7    Signal 3 [k,α] optimization convergence plots: (a) envelope entropy; (b) permutation entropy; (c) information entropy; (d) sample entropy

· 446 · 工程科学学报，第 47 卷，第 3 期



杂、噪声多，包含了多次煤岩破裂事件. 整体上，由

于 α 较小导致基于 DBO-VMD模态分解出 21层

分量，且幅值在 60 mV以下及 100～200 mV的 IMF
分量占多个，但其中心频率分布并不重叠，表明未

发生模态混叠现象，而基于 EMD分解的 IMF6和

IMF9中心频率一致，且幅值范围差异小，表明发生

了模态混叠现象 . 具体而言，VMD-IMF中心频率

覆盖范围广，最大值为 63.5 kHz，在 37.5～63.5 kHz
及 17～32.3 kHz数量高达 15个，其幅值分别在 60 mV
以下及 100～200 mV之间，属于高频‒低强度、中

频‒中强度分量. 由图 8(d)可知，EMD-IMF中心频率

最大值低于 VMD，为 29.6 kHz，中心频率低于 1 kHz
分量共计 5个，且发生模态混叠现象. 上述结果表

明 DBO-VMD算法处理破裂期较长的复杂信号可

准确筛选出噪声分量，信号分解效果优于 EMD，而

破裂期较短的原始信号 1、3的 IMF波形及中心频

率如图 9所示，其结果符合上述分析.
综上，通过对多个煤岩爆破电磁信号样本的

分形处理，发现其分形数量集中在 10个以下，VMD-
IMF中心频率覆盖范围高于 EMD-IMF，但幅值覆

盖范围反之. 相较于 EMD分解法，DBO-VMD分解

法可避免模态混叠现象，IMF中心频率分布更加

合理. 这主要是因为 EMD的自适应分解在处理突

变信号时难以判定端点效应及停止条件，而 VMD
克服了此类问题，且 DBO算法提供了合理高效的

（k，α）取值方案，因此 DBO-VMD分解法对破裂期

 

表 1    不同适应度函数下 DBO优化 VMD结果统计

Table 1    Statistics of DBO-optimized VMD results across different fitness functions

Fitness function Number of anomalies Original signal Minimum entropy value α k

Envelope entropy 0

1 4.5914 318 7

2 5.6928 171 21

3 5.5205 1926 7

Permutation entropy 2

1 0.3967 497 30

2 0.4447 2839 20

3 0.4480 1926 7

Information entropy 3

1 0.4426 231 3

2 0.9521 733 30

3 1.1177 113 11

Sample entropy 4

1 0.0026 3000 26

2 0.0061 825 30

3 0.0298 2150 30

 

170 A7=−198 mV f7=24.2 kHz

IM
F
7

−170
0
(a)

170 A6=−176 mV f6=29.5 kHz

IM
F
6

−170
0

100 A5=−127 mV f5=26.9 kHz

IM
F5

−100
0

130 A4=−169 mV f4=17 kHz

IM
F
4

−130
0

210

A3=307 mV

f3=6.4 kHz

IM
F
3

−210
0

770

A2=860 mV

f2=3.8 kHz

IM
F
2

−770
0

870 A1=1218 mV f1=1.9 kHz

IM
F
1

−870
3 4

Time/ms
5 6

0

50 A14=56 mV f14=57.4 kHz

IM
F
1
4

−50
0
(b)

23

A13=−27 mV
f13=46.4 kHz

IM
F
1
3

−23
0

19 A12=24 mV f12=43.6 kHz

IM
F
1
2

−19
0

35

A11=−40 mV

f11=42.7 kHz

IM
F
1
1

−35
0

39 A10=50 mV f10=40.4 kHz

IM
F
1
0

−39
0

47

A9=−53 mV

f9=37.5 kHz

IM
F9

−47
0

95 A8=105 mV f8=32.3 kHz

IM
F8

−95
3 4

Time/ms
5 6

0

=−495 mV

=10.6 kHz

−430

510 =730 mV =0.8 kHz

−510

19=25 mV 19=45.4 kHz

IM
F1

9

−21

18=40 mV 18=49.2 kHz

IM
F1

8

−36

=−47 mV

=54.8 kHz

−42

28 =−36 mV =63.5 kHz

−28

15=−51 mV
15=58.7 kHz

IM
F1

5

−46

Time/ms
5

Time/ms
8

9=143 mV

8=−88 mV

=189 mV

5=630 mV

=1362 mV

=831 mV

=1169 mV

=636 mV

9=0.1 kHz

8=0.01 kHz

=0.1 kHz

5=1 kHz

=1.9 kHz

=3.6 kHz

=3.3 kHz

=29.6 kHz

IM
F9

IM
F8

−95

=−78 mV =0.5 kHz−100

810

IM
F5

−2000

1500

820

王立涛等：基于 DBO-VMD滤波的煤岩爆破电磁信号时-频特征 · 447 ·



煤岩发射的电磁信号的提取效果更好. 

3.2    确定噪音分量

选取信号前 3 ms非爆破期进行傅里叶变换频

谱分析，得出其频带范围为 0～65 kHz，当最强能

量的 0.5倍为阈值时，主频带依次为：0～0.2 kHz、
0～0.33 kHz和 0～0.33 kHz，结果均趋于 0 kHz，表
明环境电磁噪音均为低频信号. 此外，因煤岩爆破

电磁信号相关特性研究不足，无法通过波形、频谱

特征去除高频低强度分量，所以基于环境噪音主

频带、中心频率、幅值及波形用红色标识出高频

低强度与中频低强度分量，如图 10所示.
最后，依据降噪流程对 IMF进行分类，纯净 IMF

为低频高强度，噪声 IMF为高频低强度，得到结果

如表 2所示. 

3.3    与 EMD方法结果比较

将表 2中纯净 IMF相加融合，得到经 2种模

型处理后的降噪信号，降噪信号可代表模型的定

量化结果. 信噪比（SNR）指信号功率与噪声功率的

比，是衡量降噪程度最直观的量，信噪比越大说明

信号包含的噪声越小，降噪效果越好 [24]. 计算两个
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模型提纯信号的信噪比，对滤波效果进行定量分

析，计算结果如图 11所示.
由图 11可知，基于 DBO-VMD法滤波处理后

的 SNR均高于传统 EMD算法，二者信噪比平均值

分别为 16.61和 7.34. 在信噪比表现上，前者的降

噪性能约是后者的 2倍，这主要是因为前者所得

纯净 IMF质量更优，对噪音的筛选更加准确有效. 

4    煤岩爆纯净电磁信号时‒频特征
 

4.1    熵与能量特征

时间窗长度为 50个采样点时，基于信息熵、

瞬时能量和边际能量研究煤岩爆破电磁去噪信号
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图 9    2种方法分解所得 IMF波形及中心频率. (a) 信号 1 DBO-VMD-IMF; (b) 信号 1 EMD-IMF; (c) 信号 3 DBO-VMD-IMF; (d) 信号 3 EMD-IMF

Fig.9    IMF waveform and center frequency obtained by decomposing two methods: (a) signal 1 DBO-VMD-IMF; (b) signal 1 EMD-IMF; (c) signal 3
DBO-VMD-IMF; (d) signal 3 EMD-IMF
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图 10    IMF分布情况及筛选结果. (a) 信号 1 DBO-VMD-IMF; (b) 信号 2 DBO-VMD-IMF; (c) 信号 3 DBO-VMD-IMF; (d) 信号 1 EMD-IMF; (e) 信

号 2 EMD-IMF; (f) 信号 3 EMD-IMF

Fig.10      IMF distribution and selection results:  (a) signal 1 DBO-VMD-IMF; (b) signal 2 DBO-VMD-IMF; (c) signal 3 DBO-VMD-IMF; (d) signal 1
EMD-IMF; (e) signal 2 EMD-IMF; (f) signal 3 EMD-IMF
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特征随时间的变化规律，上述特征时序变化如图 12
所示，并标注破裂期.

由图 12可知，不同信号的特征随时间变化规

律一致性较强，破裂期内信息熵突减，瞬时能量与

边际能量突增，非破裂期信息熵在 4.75附近浮动，

幅度不超过 0.5，瞬时能量保持在 1000 J以下，边

际能量保持在 100 J以下 . 在相同时间窗长度下，

三者在非破裂期稳定于某个阈值或某个阈值下，

并在破裂期分别突降、突增、突增，这种趋势具有

普遍性. 因此，本研究中进入破裂期的时刻边界条

件可设为信息熵低于 4.75、瞬时能量超过 1000 J
或边际能量超过 100 J，破裂期结束时刻则与之相

反. 此外，由于边际能量在破裂期内变化趋势比瞬

时能量更灵敏，故使用边际能量反应破裂过程的

状态要优于瞬时能量，这主要是因为边际能量、瞬

时能量分别反映了能量在频域、时域上的分布特

征，破裂期信号频域突变程度更大. 

4.2    双谱特征

基于短时傅里叶变换（STFT）对降噪信号的双

谱进行分析，设置窗口长度为 64个采样点，如图 13
所示 . 依据双谱图确定破裂期与非破裂期的频段，

分析脉冲幅值与频率分布，并统计不同时期的主

频段及能量占比，如表 3所示.
由图 13可知，基于 STFT的信号主体频率在

20 kHz以下，破裂期主频段为 1 ～5 kHz. 具体而

言，破裂期 3个信号覆盖频段分别为 0～14 kHz、
0～12 kHz、0～16 kHz，其中，信号 1最大峰值 840 mV

处于 2 kHz频道，并在 2 ～14 kHz频段中逐步降低

至 100 mV，非破裂期低能脉冲幅值在 160 mV以

下，主要分布在 2～4 kHz频段；信号 2最大峰值

1090 mV处于 1 kHz频道，并在 2～12 kHz频段中

逐步降低至 100 mV，非破裂期中 400～800 mV的

脉冲主要分布在 0～6 kHz频段，180 mV以下脉冲

主要分布在 0～4 kHz频段；信号 3最大峰值 84 mV
处于 6 kHz频道，并在 6～16 kHz频段中逐步降低

至 25 mV，非破裂期低能脉冲幅值在 25～50 mV之

间，主要分布在 0～4 kHz频段.
由表 3可知，破裂期 0～20 kHz频段范围能量

占比均在 57% 以上，主频段分布在 1～5 kHz，其能

量占比均在 22% 以上 ，去噪信号 1及去噪信号

2在非破裂期 0～4 kHz频段范围能量占比均在

90% 以上，主频段不高于 0.25 kHz. 去噪信号 3中

破裂期的主频较低，能量占比大，非破裂期则反

之，结合图 13（c）分析可知，这主要是因为此信号

的破裂期高能脉冲集中且维持时间短，导致其能

量集中于 1.42 kHz频道，而非破裂期则各个频段

范围广，幅值无明显变化，能量分布均匀，导致

0～4 kHz频段只占总能量的 0.30%.
因此，煤岩爆破电磁信号中破裂期频段在 20

kHz以下，主破裂事件发生时信号能量最大，其主

频段在 5 kHz以下，并随着频率上升信号分量幅值

迅速下降，非破裂期的低能脉冲则集中于 0～3
kHz频段. 这主要是因为放炮瞬间煤岩体主破裂集

中发生，随后裂隙向内部蔓延，其信号强度变弱并

逐步恢复至非破裂期状态. 

4.3    时频域关键指标

截取降噪信号中的破裂期，通过研究该时段

的偏度、峭度、脉冲指标确定该类信号的非对称

性、冲击特性与冲击现象，通过研究重心频率、均

方根频率及平均频率定量分析信号中破裂事件的

频率特性[25]，计算结果如图 14所示.
由图 14(a)可知，破裂期信号偏度均大于 0，表

明破裂前期能量占比大，分布偏右. 峭度指标介于

0.9～4.6，脉冲指标介于 3.7～6.1，破裂期越短、强

 

表 2    IMF分类结果

Table 2    IMF classification results

Original signal
Based on DBO-VMD decomposition Based on EMD decomposition

Pure IMF Noise IMF Pure IMF Noise IMF

1 1–5 6, 7 2–8 1, 9, 10

2 1–8, 20, 21 9-19 2–5, 7 1, 6, 8, 9

3 2–6 1, 7 2–7 1, 8, 9
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度越大其信号冲击性越强 . 由图 14(b)可知，煤岩

爆破电磁信号中破裂事件引起的电磁信号重心频

率集中于 10 kHz以下，与双谱分析中结果一致. 均
方根频率集中于 3～12.5 kHz之间，频率方差分布

于 4～85.6 kHz之间. 降噪信号 3、1、2中破裂事件

时长分别约为 0.5、0.6、2.5 ms，其频率指标整体上

受破裂期时长影响小. 因此，信号中破裂期的识别

可依据偏度与波形指标进行判断，峭度指标可直
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图 12    降噪信号信息熵、瞬时能量与边际能量变化规律. (a) 降噪信号 1信息熵与瞬时能量; (b) 降噪信号 1信息熵与边际能量; (c) 降噪信号 2信

息熵与瞬时能量; (d) 降噪信号 2信息熵与边际能量; (e) 降噪信号 3信息熵与瞬时能量; (f) 降噪信号 3信息熵与边际能量

Fig.12    Trends in information entropy, instantaneous energy, and marginal energy of pure signals: (a) information entropy and instantaneous energy of
pure  signal  1;  (b)  information  entropy  and  marginal  energy  of  denoised  signal  1;  (c)  information  entropy  and  instantaneous  energy  of  pure  signal  2;
(d)  information  entropy  and  marginal  energy  of  denoised  signal  2;  (e)  information  entropy  and  instantaneous  energy  of  pure  signal  3;  (f)  information
entropy and marginal energy of denoised signal 3
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图 13    基于 STFT的双谱分析. (a) 降噪信号 1; (b) 降噪信号 2; (c) 降噪信号 3

Fig.13    Bispectral analysis based on STFT: (a) noise reduction signal 1; (b) noise reduction signal 2; (c) noise reduction signal 3
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接反映出破裂期内破裂事件的强度，值越大表明

煤岩破裂事件越强烈. 此外，煤岩爆破电磁信号为

甚低频，由于其频率变化明显，功率谱能量较为分

散，故采用频率方差指标可更好地反映信号中破

裂事件的集中程度. 

5    结论

本文提出了基于 DBO智能算法与 VMD信号

分解技术相结合的煤岩爆破电磁信号滤波降噪方

法，确定 DBO-VMD的最佳适应度函数，研究了煤

岩爆破纯净电磁信号的熵、能量、双谱等时‒频指

标参数特征，主要研究结论如下：

（1）矿井爆破电磁辐射信号的噪音大、破裂期

短，采用 DBO优化 VMD参数 k、α 可以获得煤岩

破裂纯净电磁信号，DBO-VMD模型的适应度函数

的性能优劣依次为：包络熵  > 排列熵  > 信息熵  >
样本熵.

（2）相较于 EMD-IMF，DBO-VMD-IMF中心频

率覆盖范围广、无模态混叠现象，以中心频率为基

准，筛选掉高频低能量的 IMF可有效地对煤岩爆

破电磁信号降噪，基于 DBO-VMD的降噪模型性

能优于基于 EMD的降噪模型，前者降噪之后信号

的信噪比约是后者的 2倍.
（3）在相同时间窗长度下，信息熵、瞬时能量

和边际能量在非破裂期相对稳定于某个阈值或某

个阈值下；在破裂期，三者分别呈现突降、突增和

突增的趋势，这种趋势具有普遍性. 煤岩爆破电磁

信号进入破裂期的时刻边界应至少满足以下三种

特征之一：时间窗长度为 50个采样点时的信息熵

低于 4.75、瞬时能量超过 1000 J或边际能量超过

100 J. 破裂期结束时刻则与之相反，其中边际能量

反应破裂过程的状态比瞬时能量更灵敏.
（4）煤岩爆破电磁信号破裂期频段在 20 kHz

以下，主破裂事件发生时信号能量最大，其主频段

在 5 kHz以下，并随着频率上升信号分量幅值迅速

下降，非破裂期的低能脉冲则集中于 0～3 kHz频

段. 破裂期中时频指标为偏度大于 0、峭度指标介

于 0.9～4.6，脉冲指标介于 3.7～6.1.
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表 3    去噪信号不同时期的频段及能量占比

Table 3    Frequency bands and energy distribution of the noise-removed signal at different times

Denoised
signal

Fracture stage Nonrupture stage

Energy ratio of 0–20 kHz Main frequency band and
energy proportion Energy ratio of 0–4 kHz Main frequency band and

energy proportion

1 92.17% 4.76 kHz, 22.63% 97.38% 0 Hz, 64.49%
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