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ABSTRACT In shaft mining, conventional vibration monitoring of blasting operations is often affected by environmental factors and
system limitations, complicating the extraction of coal-rock rupture signals. This paper explores the use of electromagnetic radiation
signals for blasting monitoring, introducing a noise reduction method for these signals and examining the time—frequency characteristics
of the pure signals. Initially, the paper suggests using the dung beetle optimizer (DBO) algorithm to dynamically adjust the parameters of
variational mode decomposition (VMD) for the efficient acquisition of optimal decomposition parameters [k, a]. By analyzing
electromagnetic signal optimization sunder different fitness functions and evaluating three types of anomalies, namely repeated
mutations, boundary stabilization, and unchanged states, we find that the performance of the DBO-VMD model in processing coal-rock
electromagnetic signals ranks as follows: envelope entropy > ranking entropy > information entropy > sample entropy. A center-
frequency criterion noise reduction model is proposed to eliminate high-, intermediate-, and low-intensity components in the signal.

When comparing electromagnetic signals processed by the DBO-VMD and empirical mode decomposition (EMD), the DBO-VMD
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effectively avoids modal aliasing and provides more reasonable center-frequency distributions. After applying a consistent noise
reduction process, the DBO-VMD model shows superior performance over EMD. It provides enhanced smoothing and fidelity of pure
signals and is more efficient at noise screening. The DBO-VMD achieves a signal-to-noise ratio about two times that of the EMD.
Finally, we conducted a statistical analysis of the entropy, energy, bispectrum, and time—frequency domain characteristics of pure
electromagnetic signals associated with coal-rock ruptures. During stable periods, information entropy, instantaneous energy, and
marginal energy remain below specific thresholds, but they exhibit sudden changes during rupture events. Rupture periods begin when
information entropy falls below 4.75, instantaneous energy exceeds 1000 J, or marginal energy surpasses 100 J, based on a 50-point time
window. Conversely, the conclusion of the rupture period corresponds to opposite conditions, with marginal energy responding more
sensitively to rupture states than instantaneous energy. During ruptures, skewness is positive, steepness ranges from 0.9 to 4.6, and pulse
index varies from 3.7 to 6.1, all within a frequency band below 20 kHz. Main rupture events coincide with peak signal energy, mostly
under 5 kHz. As frequency increases, signal amplitude decreases rapidly, with low-energy pulses during non-rupture periods
concentrated in the 0-3 kHz range. This study sheds light on the time—frequency characteristics of electromagnetic radiation signals
generated by blasting. These insights lay the groundwater for effectively monitoring such signals in underground mining operations.

KEY WORDS underground blasting; electromagnetic radiation; dung beetle optimization algorithm; variational mode decomposition;
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Table 1 Statistics of DBO-optimized VMD results across different fitness functions

Fitness function Number of anomalies Original signal Minimum entropy value o k

1 4.5914 318 7

Envelope entropy 0 2 5.6928 171 21
3 5.5205 1926 7
1 0.3967 497 30

Permutation entropy 2 2 0.4447 2839 20
3 0.4480 1926 7

1 0.4426 231 3

Information entropy 3 2 0.9521 733 30
3 1.1177 113 11

1 0.0026 3000 26

Sample entropy 4 2 0.0061 825 30

3 0.0298 2150 30
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Table 2 IMF classification results

Based on DBO-VMD decomposition

Original signal

Based on EMD decomposition

Pure IMF Noise IMF Pure IMF Noise IMF
1 1-5 6,7 2-8 1,9,10
2 1-8, 20, 21 9-19 2-5,7 1,6,8,9
3 2-6 1,7 2-7 1,8,9
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Fig.11 SNR under two denoising models
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Table 3 Frequency bands and energy distribution of the noise-removed signal at different times
Fracture stage Nonrupture stage
Denoised
signal Energy ratio of 0-20 kHz Main frequency bapd and Energy ratio of 0—4 kHz Main frequency ba'nd and
energy proportion energy proportion
1 92.17% 4.76 kHz, 22.63% 97.38% 0 Hz, 64.49%
2 96.16% 3.82 kHz, 22.81% 90.52% 0.25 kHz, 44.78%
3 57.14% 1.42 kHz, 28.63% 0.30% 2.65 kHz, 3.55%
90
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Fig.14 Time—frequency domain characteristic parameters: (a) time; (b) frequency

2 S W A 2R D T SR 4 R R B R SR
A W R R 2L A, A R AR SR
ELARI, T AR AR A B, DR RE RO O
B, BRI 3 J5 2248 bR 0] S 3l S e f5 5 PP g
EAS RERIVE LikET

5 i

ARSI T T DBO®AEH LS VMD 5 5
I3 ARG B 1) I R0 F R A5 5 DB D R R
%, 2 DBO-VMD 1 5 438 N7 B2 R A, BFSR T M
FRRAE Al B RE S S R L RE R BUE SRR SR
PR SEURAE, BRI

(1) B 93 B P s A5 5 P R L B 10
%, % 1 DBO itk VMD B8 k. o 7] DL 315 B
T 24 i e v 744755, DBO-VMID A5 584 %) 38 3 J3 R %
B BE P 45 MKk Ry L4500 > HEF R > 15 B >

(2) M1 % F EMD-IMF, DBO-VMD-IMF 1.0 4
REFTICE | TSR EIHG, DL DR Ay 3
Y, T 30k i w5 ATAIG E i A IMF ] A5 00 ) e A
105 HL B 15 5 P I, 3 T DBO-VMID [ [ I A 751
AL T 5 T EMD M FERR AR, BT B 2 J5 55
PR A5 e Lb 24 J2 5 3 1Y) 2 4%

(3) FEAH R B[] B 4 B2 R, A5 B0 . BEAT g i
1321 s B 12 A I A 2800 AH 6 AR T A 8 i
ABE T 2, =& 2SR A

G ) e, I A LA . RS R 0 P
155 UE A 24 30 1) sk 2] s AL 07 28 /0 A2 DA — el
FRAE 22— I 8] B K BE Ry 50 AR o5 s 1) 455 8 00
K F 4.75, Binf g 1 1000 T 55321 Pr BE B8 2
100 J. 1% 24 B0 25 SR il 20 ) 5 22 A iz, HG v 0 B g o
J52 7 1 254 3 AR P R 2 B R s R O R A

(4) RE 8 W P 15 0 ol S8 30 01 B AE 20 kHz
DIF, Fme s R A G ae it i ok, H 3B
£ 5 kHz LT, FF Bl 5 050% 1 THE 5 53 5 1 (i 11
T R, AR 2400 04 4K BE bk v 0 46 0 ~ 3 kHz A5
B2l S T B A A R B KT 0 I B AR AR A
T 0.9~ 4.6, fkthdg5 N T 3.7~ 6.1.

2 % X #t

[1]  Kumar S, Choudhary B S, Mishra A K. Modelling the effects of
ground vibrations on the surface due to blasting in underground
coal mines. Nat Hazards, 2022, 110(1): 315

[2]  ZhangJ K, Jiang N, Zhou C B, et al. Vibrating table test of human
comfort under blasting vibration and its evaluation system
construction. Chin J Eng, 2023, 45(2): 326
(oRak 2, e, FALDL, 45, R sl ™ A E AR 3h &5
B K AN R R, TRERIA244R, 2023, 45(2): 326)

[3] Chen F, He G S, Dong S, et al. Space-time effect prediction of
blasting vibration based on intelligent automatic blasting vibration
monitoring system. Appl Sci, 2021, 12(1): 12

[4] Zhao Z P, Yan R B, Cong J Y. Advanced deep hole pre-splitting

blasting of hard roof type and effect evaluation analysis. Coal Sci


https://doi.org/10.1007/s11069-021-04948-7
https://doi.org/10.3390/app12010012

FE 7% 2T DBO-VMD JE I A M A BB BB 045 5 ik A0 RRAE

- 453 -

(5]

(6]

[10]

[11]

[12]

[13]

[14]

Technol, 2023, 51(3): 68

RIS, 12050 52, AR 4. &0 TRUR B A TR AL 0 AR I IS 70 K
BT AT, IEBRLAHEAR, 2023, 51(3): 68)

Wang G H, Wang Y B, Xie P, et al. Rock breaking mechanism and
the application of medium-deep hole-in-hole segmented blasting in
rock roadway using digital electronic detonators. Chin J Eng,
2023,45(11): 1820

(EREZE, THEK, 37, 5. SETH R T HE e B iR
FL P G B A HL) B . TR R4, 2023, 45(11):
1820)

Qiu L M, Zhu Y, Song D Z, et al. Study on the nonlinear
characteristics of EMR and AE during coal splitting tests.
Minerals, 2022, 12(2): 108

Cai J T, Chen X B, Fang L H, et al. Study on the seismotectonic
environment in Bengbu city using the dense magnetotelluric array.
Chin J Geo, 2023, 66(2): 638

CBEZE0, Wi/ o, 07 RAF, 458, F G H i B4R M S AT A0
RGBT, M BRI, 2023, 66(2): 638)

QiuL M, Li Z H, Wang E Y, et al. Research on remote intelligent
monitoring and early warning system for coal and gas outburst. /nd
Mine Autom, 2018, 44(1): 17

(ERE2RA, 2= 5000, FIETC, 45, M5 BUI 28 Hh e el Al sl T
RGHIIE. TH A B, 2018, 44(1):17)

Wei M H, He X Q, Song D Z, et al. Vector characteristics and laws
of electromagnetic radiation generated from coal rock fracture. J
China Univ Min Technol, 2023, 52(6): 1096

(F 8588, Tk, RAA, . MR R AL 8 S5 O B LA
AR, 2023, 52(6): 1096)

Qiu L M, Song D Z, He X Q, et al. Multifractal of electromagnetic
waveform and spectrum about coal rock samples subjected to
uniaxial compression. Fractals, 2020, 28(4): 2050061

Xin Z H, Zhang X D, Liu T, et al. Research on electromagnetic
interference characteristics and electromagnetic compatibility
standard of intelligent equipment. Coal Sci Technol, 2020, 48(7):
255

(P, sRIBEAC, X0, 45 JF T RE TR AR eV A B
HEENTHENIGL. R AHOR, 2020, 48(7): 255)

Li B L, Wang E Y, Li Z H, et al. Automatic recognition of
effective and interference signals based on machine learning: A
case study of acoustic emission and electromagnetic radiation. /nt
J Rock Mech Min Sci, 2023, 170: 105505

Yang W, Li X C, Xu R, et al. Experimental investigation on time-
frequency evolution characteristics of electromagnetic radiation
below ULF reflecting the damage performance of coal or rock
materials. Struct Contr Health Monit, 2022,29(2): e2874

Li B L, Li Z H, Wang E Y, et al. Discrimination of different AE

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

and EMR signals during excavation of coal roadway based on
wavelet transform. Minerals, 2022, 12(1): 63

Ren L, Zhen L X, Zhao Y, et al. Fault diagnosis of rolling bearing
under strong background noise based on SSA-VMD-MCKD. J Vib
Shock, 2023, 42(3): 217

(R, Bifefs, B =, 4. 2T SSA-VMD-MCKD (33 5 et
8T TR SR EEIS . ks 5 ik, 2023, 42(3): 217)

DiY Y, Wang E Y, Li Z H, et al. Comprehensive early warning
method of microseismic, acoustic emission, and electromagnetic
radiation signals of rock burst based on deep learning. Int J Rock
Mech Min Sci, 2023, 170: 105519

Wu C L, Ful C, Huang X R, et al. Lithium-ion battery health state
prediction based on VMD and DBO-SVR. Energies, 2023,
16(10): 3993

He C B, Che Q X, Xu Z H, et al. Signal denoising method based
on parametric self-optimizing VMD. J Vib Shock, 2023, 42(19):
283

(TSR, AHAE, thiRfe, 4. BET 2808 SO0 B 2 Y
= M k. SRS vhir, 2023, 42(19): 283)

Xue J K, Shen B. Dung beetle optimizer: A new meta-heuristic
algorithm for global optimization. J Supercomput, 2023, 79(7) :
7305

Shen Q W, Zhang D M, Xie M S, et al. Multi-strategy enhanced
dung beetle optimizer and its application in three-dimensional
UAV path planning. Symmetry, 2023, 15(7): 1432

Yang R Z, Xie X R, Teng Y L, et al. Entropy-based federated
incremental learning and optimization in industrial Internet of
Things. J Electron Inf Technol, 2024, 46(8): 3146

(AT, WK, BEiRs, 6. Tl MR I T3 B A G
seE ) B S . BTSRRI, 2024, 46(8): 3146)

Qin Q D, Huang Z R, Zhou Z H, et al. A two-layer decomposition
model based on envelope entropy for influenza forecasting. Syst
Eng Theory Pract, 2023, 43(12): 3505

(A, BIRsR, RS, . BT R R Y XUZ S A i st
BRI, R TREHE 594, 2023, 43(12): 3505)

Bian J, Jing L X, Liu Y Q. Application of entropy theory in
bearing fault diagnosis. J Dalian Polytech University, 2024,
43(4):300

GRZE, Foked, XIHERK. BB e Rl RS R2 0T b A B H. K%
Tk R4, 2024, 43(4): 300)

Zhou C J, Zhang Y F. Evaluating onset times of acoustic emission
signals using histogram distances. Mech Syst Signal Process, 2012,
28: 63

Zhao N Y, Zhang J J, Ma W S, et al. Variational time-domain
decomposition of reciprocating machine multi-impact vibration

signals. Mech Syst Signal Process, 2022, 172: 108977


https://doi.org/10.3390/min12020108
https://doi.org/10.6038/cjg2022Q0376
https://doi.org/10.6038/cjg2022Q0376
https://doi.org/10.17146/aij.2018.849
https://doi.org/10.17146/aij.2018.849
https://doi.org/10.17146/aij.2018.849
https://doi.org/10.1142/S0218348X20500619
https://doi.org/10.1016/j.ijrmms.2023.105505
https://doi.org/10.1016/j.ijrmms.2023.105505
https://doi.org/10.1016/j.ijrmms.2023.105519
https://doi.org/10.1016/j.ijrmms.2023.105519
https://doi.org/10.3390/en16103993
https://doi.org/10.1007/s11227-022-04959-6
https://doi.org/10.3390/sym15071432
https://doi.org/10.1016/j.ymssp.2011.08.004
https://doi.org/10.1016/j.ymssp.2022.108977

	1 DBO-VMD降噪方法
	1.1 DBO-VMD优化方法
	1.2 电磁信号降噪流程及特征指标

	2 DBO优化VMD参数最佳适应度函数选择
	2.1 信号采集方案
	2.2 信号来源
	2.3 不同目标函数性能分析

	3 包络熵为适应度函数的DBO-VMD滤波性能
	3.1 信号本征模函数
	3.2 确定噪音分量
	3.3 与EMD方法结果比较

	4 煤岩爆纯净电磁信号时‒频特征
	4.1 熵与能量特征
	4.2 双谱特征
	4.3 时频域关键指标

	5 结论
	参考文献

