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ABSTRACT The synergistic oil production using heterogeneous combination flooding and field adjustment measures achieved good
results in increasing oil production and decreasing water cut in the Ng3 block of the Gudao Oilfield. However, because of the complex
heterogeneity of the actual formation, differences in the deployment of interlayer well networks, and different injection volumes of
chemical agents in different layers, the extraction of planar and vertical remaining oil by heterogeneous combination flooding is affected.
Clarifying the contributions of different balanced displacement methods and elucidating the mechanism of extracting the different types
of remaining oil are difficult. Therefore, this study establishes five different types of models for remaining oil reservoirs based on the
actual formation parameters of target blocks using reservoir numerical simulations. The remaining oil, extracted remaining oil, oil
displacement efficiency, sweep coefficient, planar water saturation variation coefficient, and vertical water absorption imbalanced
coefficient are used to evaluate the balanced displacement effects of heterogeneous combination flooding. On this basis, the mechanism

of the remaining oil extraction was elucidated. The numerical simulation results show that field adjustment measures such as well
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network adjustment and layered injection allocation for heterogeneous combination flooding can maximize the balanced displacement
effect. For different types of remaining oil reservoirs, the priority of implementing balanced displacement methods was clarified. In
practical applications, suitable balanced displacement methods should be selected based on the type of reservoir and conditions of the
field implementation. In reservoirs with developed high-permeability zones, heterogeneous combination flooding effectively creates
advantageous channels for water flow. Meanwhile, well network infilling can increase the swept volume of heterogeneous combination
flooding in low-permeability areas and enhance the displacement efficiency of the enriched remaining oil. The balanced displacement
effect of heterogeneous combination flooding was better than that of the well network adjustment. In reservoirs with imperfect injection
production well networks, improving the well network can increase the sweep range of streamlines, and synergistic heterogeneous
combination flooding can dynamically regulate and strengthen the extraction of remaining oil. The balanced displacement effect of well
network adjustment is better than that of the heterogeneous combination flooding. In unconnected reservoirs, the enriched remaining oil
blocked by faults is difficult to connect with production wells. Thus, well network adjustment can effectively overcome the blocking
effect of faults and extract unconnected remaining oil. The balanced displacement effect of well network adjustment is better than that of
the heterogeneous combination flooding. In rhythmic reservoirs, injected fluids flow along high-permeability water-flooded intervals.
Heterogeneous combination flooding can effectively plug them, thereby increasing the water absorption of weak, low-permeability
water-flooded intervals and extracting the high-saturation remaining oil. In interbed reservoirs, layered water injection can significantly
improve the degree of vertical water absorption imbalance. Heterogeneous combination flooding further played a role in conformance
control and oil displacement at different layers, enhancing the sweep effect and improving oil displacement efficiency, effectively
extracting the remaining oil controlled by the interbeds. The effect of heterogeneous combination flooding on improving balanced
displacement is better than that of layered water injection, and the layered allocation of heterogeneous combination flooding can achieve
vertical balanced displacement to the maximum extent. This study provides a reasonable explanation for extracting different types of
remaining oil and achieving balanced displacement for heterogeneous combination flooding and affords reference significance for future
promotion and field applications in different reservoirs.

KEY WORDS heterogeneous combination flooding; balanced displacement; remaining oil extraction; reservoir numerical simulation;

well network adjustment; layered injection allocation
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Fig.1 Numerical simulation models: (a) reservoirs with developed high permeability zones; (b) reservoirs with imperfect well networks; (c) reservoirs

with unconnected zones; (d) reservoirs with rhythm; (e) reservoirs with interlayers
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Table 1 Reservoir physical parameters

Parameter Value Parameter Value
Depth/m 1173-1230 Oil covering area/km’ 0.275
Geological reserves/(10* t) 123 Formation pressure/MPa 12
Crude oil viscosity/(mPa-s) 46.3 Temperature/ °C 69.5
Average porosity/% 33 Permeability/(10~ pm?) 1500-2500
Formation water salinity/(mg-L™") 5923 Crude oil volume factor 1.105
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Table 2 Sweep efficiency in each development method

Reservoir type Development method Sweep efficiency/% Increased value/%
HCF 96.052 7.860
Reservoirs with developed high permeability zones WNA 94.676 6.484
HCF after WNA 98.484 10.292
HCF 93.704 5.440
Reservoirs with imperfect injection production well WNI 93.932 5.668
networks
HCF after WNI 97.248 8.984
HCF 91.696 6.960
Reservoirs with unconnected zones WNA 92.888 8.152
HCF after WNA 96.124 11.388

F3 KRR R

Table 3 Water saturation statistics of each development method

Reservoir type Development method Mean Standard deviation Coefficient of variation
PF 0.717 0.092 0.128
Reservoirs with developed high WNA 0.740 0.082 0.111
permeability zones HCF 0.775 0.076 0.098
HCF after WNA 0.782 0.072 0.092
PF 0.727 0.080 0.110
. o S HCF 0.764 0.072 0.094
Reservoirs with imperfect injection
production well networks WNI 0.775 0.071 0.092
HCF after WNI 0.782 0.070 0.090
PF 0.685 0.142 0.207
HCF 0.709 0.140 0.198
Reservoirs with unconnected zones
WNA 0.734 0.126 0.172
HCF after WNA 0.765 0.120 0.157
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Fig.4 Remaining oil distribution: (a) PF; (b) HCF; (c) WNA; (d) HCF after WNA
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Fig.5 Response remaining oil distribution: (a) HCF; (b) WNA; (c) HCF after WNA
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