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Optimization design of an acoustic cover layer for a cylindrical cavity based on porous

materials
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ABSTRACT During the launch and flight of carrier rockets, the acoustic and vibrational excitations generated by the external
environment pose significant threats to their internal payloads. These disturbances, if not mitigated, can lead to structural fatigue or
damage to sensitive equipment. To address this problem, porous materials, renowned for their lightweight and sound-absorbing
properties, have been widely investigated and applied to noise reduction and vibration damping for payload fairings. In this study, a
comprehensive investigation into the parameter fitting and acoustic performance optimization of porous materials is conducted, utilizing
advanced physical models, multifluid impedance transfer theory, and particle swarm optimization algorithms. This research combines
experimental approaches, including impedance tube experiments, with numerical methods, such as acoustic finite element analysis, to
enhance the noise control capabilities of porous materials. This study employs three distinct porous materials, namely, melamine,
polyester, and fiberglass, which are integrated into a multilayer porous acoustic coating. The design of this coating is based on the
optimization of key parameters, including the thickness distribution and the arrangement of different layers. Various configurations were
explored, and control groups were established to assess the improvements brought by the optimization process. Impedance tube
experiments were conducted to measure the sound absorption coefficients of the multilayer porous acoustic coatings before and after
optimization. Results showed a significant enhancement in the absorption performance, with a marked increase in the absorption

coefficient across a broad frequency range. The underlying sound absorption mechanisms of the porous materials were analyzed to

%5 H #3: 2024-06-07
B L TE : Ll in s ki 5 AR 45 3 4 5% Bh 35 H (2020-JCIQ-1J1-029)


mailto:rongjili@bit.edu.cn
mailto:rongjili@bit.edu.cn
https://doi.org/10.13374/j.issn2095-9389.2024.06.07.002
https://doi.org/10.13374/j.issn2095-9389.2024.06.07.002
https://doi.org/10.13374/j.issn2095-9389.2024.06.07.002
http://cje.ustb.edu.cn

SRR S - T 2 SR 0 I A s i e 2 B e SR A A it - 469 -

explain these improvements. To further validate the performance of the optimized multilayer porous acoustic coating, a cylindrical cavity
experiment was conducted. This experimental setup simulated the cylindrical section of a carrier rocket payload fairing, providing a
controlled environment to evaluate the noise reduction and vibration-damping effects of the coating. The findings showed that, after
applying the optimized coating, the overall sound pressure level at various measurement points within the cavity decreased by at least
7.4 dB. The power spectral density of acceleration measured on the cylindrical wall was also significantly suppressed, particularly in the
mid-to-high frequency ranges. Vibration suppression is critical for protecting the structural integrity of the payload fairing and the
equipment housed within it. In addition to the experiments, acoustic finite element simulations were conducted to analyze the effects of
the placement and coverage rate of porous materials on the noise reduction and vibration-damping performance within the cylindrical
cavity. The simulation results showed that placing the porous materials closer to the sound source yielded better noise reduction results.
However, increasing the coverage rate of the porous material did not lead to proportional improvements in noise reduction or vibration
damping. This finding indicates that the design of the acoustic coating must carefully maintain a balance between noise protection and
weight and space efficiency. In conclusion, this research highlights the significant potential of porous materials in enhancing noise and
vibration protection for carrier rocket payload fairings. The optimized multilayer porous acoustic coating not only improves sound
absorption but also delivers effective noise reduction and vibration suppression, providing valuable insights for aerospace applications.
The findings indicate that the optimal placement and coverage design of porous materials are essential for achieving the desired
protective effects while minimizing material usage and overall mass. These results contribute to the ongoing development of more
efficient and lightweight noise control solutions for carrier rockets.

KEY WORDS porous materials; particle swarm algorithm; noise reduction; vibration damping; cylindrical cavity
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Table 1 Parameters of porous materials

o/(Pa-s'm?) ¢ Ao A/mm  A’'/mm

Melamine foam 10034 0.957 1.01 0.11 0.21
Polyester foam 4741 098 1.14 0.15 0.3
Fiberglass foam 9977 099 1.09 0.15 0.35
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Item Thickness/mm Arrangement

1—Polyester foam 20.1
2—Fiberglass foam 20 1-3-2
3—Melamine foam 39.9

22 RALFERE RELWIKIE

HR A I Ak 485 SR ) 25 5 SRR 1Y 1-3-2 HE A 2
2= Z LA, AL 7(a), WT 38 i BE 40 A 52 6 3k
U 75 2 BN T S e Ak 7 vk i A A8, aniEl 7(b).
TR BRI S RS e R T X
o, aniE 8(a), SL8e 5 e T 5 45 R o — 8, 1
W7 e A R AT SRR O T R A S W £ )2
Z AL B A T A BRI R, BB T — N R
A, SRS —ECN 8 em, B IEE N R4
4t 40 mm, B A 20 mm, = B E L 20 mm, HEA
Ty ik 2-3-1, JF J 52 5 4R WO W R #0510
fE S5 R X b, WnE 8(b) s,

1.0r

0.8

0.6

04+

Sound absorption coefficient

— Experimental data of the 1-3-2
0.2 — — Theoretical data of the 1-3-2

200 400 600 800 1000 1200 1400 1600
Frequency/Hz

B 7 Z)Z2ZABRHUE S5, (a) Z2)2ZAURHALT; (b) BEETESE
Fig.7 Impedance tube experiments with multilayer porous materials:
(a) specimens of multilayer porous materials; (b) impedance tube

experimental system

M4 ] 8(b) Pt A5 A AL TS P A1l A4 i Wi s 3R
B8, 5 Hoa(f)/mith 2K 9 s, HWLRY
R T O E B 1-3-2 AR 7 i i 2L A S AR 1
W RCR, 2P 3R T oAkt ik i A k.

PeAb e 15 1-3-2 2 2 Z fL A RAH T 0 IR 21
W, NS R B 1R BT, 456 2 LM R
Mg YL, FHL 3 A e 7 A8 R AR T Y T L 22 LA R
T [ W 1 AR JBT R 7 U A 2 AL A RLZ TS B ISR
B, b g BH B e 1 7R U 2 2k 22 LA kL Y B )
KN, BH 38N B A 1) 75 5 3R A Z2 L RHZ
W WSCFE B . AS B 90 38 B — 28 Z LA BHTE % JEH:
95 (BB AT 4E 28.6 kg'm . BYESAR 24.7 kgm >, =
R ENE 8.6 kgm™) Y AL T WA RE ) b =R AU
SRR T R ER L 4k, — RGN 5, Ktk
TE & B 43 T i) = 3R U JBE B o R, B AT 5 SR i
L1 Y JU-F- 422 05 B AR SR B8 5 1l 3R 1 Al = SR Ul
VI B AR Y Tt BEL 422 30, O EL Y R T SRR 41 4 19 It
BEL, S 7 e 75 I 56 40 1l OB 1, 2% I HE AR D7 U
o S8 Lh LA R IR P A0 1Y) = SR U A B B A A
AL AR B 1-3-2 HEAR B 2 2 Z AL R DL )
R B Sy Fe ¥ R 25 L r il () 554, i A A B4
T AR RCR.

| ()

0.8

0.6

04+

Sound absorption coefficient

/I —— Experimental data of the 1-3-2
— — Experimental data of the 2-3-1

02y

200 400 600 800 1000 1200 1400 1600
Frequency/Hz

B8 ZZZAUMEIEE REL () PLALERECFSCER S BB XT LL; (b) PLALRTIS AR S RO L

Fig.8 Sound absorption coefficient of multilayer porous materials: (a) experimental and theoretical comparison of the optimized samples; (b) comparison

of the sound absorption coefficient of the samples before and after optimization



474 -

TRERLF2ER, 26 47 5, 5 3

100
90
80 r
70
60
50
40 -
30

20 — 132
10p’ - =231

a(f)/m

200 400 600 800 1000 1200 1400 1600
Frequency/Hz

B9 a(f)/milhizk
Fig.9 «a(f)/m curve

3 ZIMHEFESZEMEREIE

3.1 BERRMERELEHIE

DI I B8 [ B 4 LA R Sy B e H bR, i T
T 2F42 300 mm., {5 800 mm., JEEEF 1 mm (1) 45 i
B [ A S 4 78, >R 149 75 A8 AE S P R Al , AE ST
T 5 R B W 75 {5, A RE b A 0 e R AR IR BN
5, A B 2 )2 Z LA RE A R MR DR PR AR . 25 A A
HANE 10 frR.

Front view Top view Front view
02 ml
16
| 4
2 0.2(m
02m| 5
3 T
i 0.3jm o
50.15 m O

O Acceleration measurement

B 10 7 ) s 5 FE I s A R R

Fig.10  Schematic diagram of the arrangement of sound pressure level

@ SPL measurement

(SPL) and acceleration measurement points

PRFE P WA AN AR, 1 5 T 8 25 A M 7 S5
I ST A L ELAR Y, X B e R 00 A5 i 85 O,
B1L. B 5eA5 80 T 2 Al 00 T A R [R5 I S
HIF R 1/3 AR, REAEAE R 5 22 Bk 2 fL M
e RS DL 225 X 4.

JHUE £ 2 2 G 2 fL R B IR SRR R
PE, K ULk 5 1 2 2 2700 R B0 T B AR AR N 56,
TRAr 3 75 S Al 5 25 WA Dl — 3k, BRI 50 F
It 5 2 WA DL HEAT X L, IR RS A AN R R
9, AR EHE, IRl 12 DL R R 3.

F S 36 445 SR AT, A P S A5 S T s T e

B 11 2SR A S S FUE LR A

Fig.11  Schematic diagram of the empty barrel noise experiment and

simulation model

F/DREAL 7.4 dB, 2L T A i B R M b
R A, AEL AT BT L M 7 6T 7 ) A3 R A 1o I AT i %
(a3, Sk B IE— 2 T 20 43 BT, AR S 56 5040 22 11
rRIRA B R S L Y R R M A (100 &
400 Hz), AN A5 1 A48, dn (&l 13 (a) 25 A G 00 F B
TE 225.0 Hz A5 2% B 3 Ak 0 5 75 e 9058 3 0, R
FH A BB R TF RS A LA 0T, 2 BIZ M 7 U iy
2237 Hz bR A RS £, E 13(b), X 535K
75 3 114 W 7 U (B A R AR 25 AN R I 0.6%; Bk £ )2
Z LA R R 7 i N7 R (B AT — T R, DA AR 1) IR
R B, AT B PR B8 MR A RN v o B B S
3.2 RHRTHE BB D IE

B T R4 B R RE AL, Z AL RS B X
S5 R I U R R, B AN XA SO I I 2 2 2 AL
AR R ik S 36, A5 H 5 A R B e 1 A5 8 L0
PRPERE. R HEAT X, 43 50 A5 3 76 AH [ B RS il
T, Bk 2 2 2 AL RS B A AR S BRI E
B4 JIIT B B Ty 2R % 4 i (PSD), HL A7 B N & 10,
RN E 14, Bk T 22 2R, B
7 B HR Bf W R 7 R A B S AR, E T 22
L LML Sk 3 oA M ) st A 3] 4 A
BFEH.
3.3 B B A ES FR xR IR IR 1 AR AU B2

TE B 22 FL M BHE by B A 28 i 75 2 B 56 2
WV A 5 R AR o R L R R U IR P R A Y
M), 4390 B % PR A R 28 OF TR 07 ORI 9T SR = R
Jiie 2 LM BHE R BIF 5 X 42, JR B AN A8 152 4 50 mm,
5 LR R SF DA KR R G ot 245 4 o 3t )
¥ 5 15 30— B, AR T80 SR )RR B A
TEAE A 35Dl

S I O A LM BB A s e R IE
W TR DA B B AN, AR = R U IR A
FEFE 1 A0 BB 07, X b g M i DA AR B i i 2%
S WO RN 50% (2R 7 5 2 T R A AT 5 RE 1
AL Z ), ar 6 s 7R 2 al, B2 R
T OUTF R T {5 BT, WiE 15 s,



SR 45« BT 2 ARG R R 2 s P 2 B R DA it

120
110 |
x 100
z
-
=
90
80 .
— Point]-Empty
Point1-Porous material
70 . . .

16 40 100 250 630 1600 4000

1/3 Octave/Hz

120

110 ¢

100

SPL/dB

90

80 .0 .
—— Point3-Empty

Point3-Porous material

70

16 40 100 250 630 1600 4000

1/3 Octave/Hz

120

- 475 -

120

110 1
o 100 |
z
=
A~
Y90+

80 .

— Point2-Empty
Point2-Porous material
70 . . . . . —
16 40 100 250 630 1600 4000
1/3 Octave/Hz

120

110
m 100 |
=2
0
[=%
ZE

o Point4-Empty

Point4-Porous material
70

16 40 100 250 630 1600 4000
1/3 Octave/Hz

110 |

100

SPL/dB

90 |

80

J— Point5-Empty
Point5-Porous material

16 40 100

250 630

1600 4000

1/3 Octave/Hz
B 12 SRl 5 ik 2 2 2L R RGOS G E

Fig.12 Comparison of the sound pressure level spectra between the empty barrel and the barrel with multilayer porous materials

F3 HFEHN L

Table 3 Comparison of the total sound pressure level

Point  Empty/dB Porous material/dB Noise reduction/dB

Point 1 122.5 114.5 8
Point 2 1194 109.9 9.5
Point 3 122 112.7 9.3
Point 4 120 112.6 7.4
Point 5 119.2 110.9 8.3
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