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摘    要    滚动轴承作为旋转机械的重要组成部分，其正常运行直接影响机器的使用寿命和运行状态. 为了提高滚动轴承故障

诊断的准确性，本文提出一种基于动态减法平均优化器（DSABO）和平行注意力模块（PAM）的柔性残差神经网络（FResNet），

用于滚动轴承故障诊断 . 具体而言，首先设计一种基于卷积神经网络的柔性残差模块来构建 FResNet. 该模块允许在

DSABO迭代时更改卷积层数、卷积核数和跳跃连接数，从而增强网络故障特征提取能力并减少网络退化. 其次，设计具有卷

积层的 PAM来融合通道注意力和空间注意力输出权重，通过与滚动轴承运行数据结合，实现数据特征增强. 于是，DSABO、

PAM和 FResNet的集成形成了一个有效的滚动轴承故障诊断模型，命名为 DSABO-PAM-FResNet. 最后，利用美国凯斯西储

大学滚动轴承故障数据集验证所提 DSABO-PAM-FResNet模型的可行性和有效性. 结果显示，在信噪比为–6 dB环境下所提

模型对滚动轴承故障诊断的准确率为 97.18%，证明所提模型具有较好的抗噪能力；在 0.75 kW、1.5 kW和 2.25 kW不同负载

条件下，所提模型对滚动轴承故障诊断的平均准确率为 98.2%，证明所提模型具有良好的变工况诊断适应能力. 与其他智能

故障诊断方法的对比结果表明，所提 DSABO-PAM-FResNet模型的诊断精度更高，为滚动轴承故障诊断提供了一种新的有效

智能方法.

关键词    轴承故障诊断；柔性残差神经网络；动态减法平均优化器；平行注意力模块；噪声干扰
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ABSTRACT    Rolling bearings play a crucial role in rotating machinery, and their efficient operation is vital for the machine’s longevity

and  performance.  In  numerous  real-world  situations,  diagnosing  faults  in  rolling  bearings  presents  significant  challenges.  Signals

obtained  from  industrial  applications  often  contain  unavoidable  noise,  complicating  analysis.  Additionally,  the  intricate  working

conditions  in  actual  operations  can  greatly  influence  bearing  signal  characteristics.  Consequently,  traditional  diagnostic  techniques

struggle to effectively handle the effects of varying loads and noise. To improve the accuracy of fault diagnosis for rolling bearings in

noisy and variable working conditions, a new approach using a flexible residual neural network (FResNet) is introduced. This network is

built  on  a  dynamic  subtraction  average-based  optimizer  (DSABO)  and  a  parallel  attention  module  (PAM).  The  core  of  FResNet  is  a

flexible residual module based on convolutional neural networks, which allows for adjustments in the number of convolutional layers, 
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convolutional  kernels,  and  skip  connections  during  optimization.  These  design  features  improve  the  network’s  ability  to  extract  fault

features and prevent degradation. Second, a DSABO with a dynamic position update strategy is proposed for parameter optimization of

the above FResNet with the flexible residual module. This optimizer helps the model avoid being trapped in local optima, strengthening

the  fault  diagnosis  performance  of  the  network.  Third,  a  PAM is  integrated,  featuring  convolutional  layers  that  combine  channel  and

spatial attention. This integration enhances data feature extraction by aligning it with rolling bearing operation data. Together, DSABO,

PAM, and FResNet create an effective rolling bearing fault diagnosis model known as DSABO–PAM–FResNet. Finally, the feasibility

and effectiveness of the proposed DSABO–PAM–FResNet model are validated using the rolling bearing fault dataset from Case Western

Reserve University in the United States. The ablation experiments reveal that the DSABO model consistently achieves accuracies above

97%  across  different  noise  environments.  This  performance  surpasses  that  of  models  using  grey  wolf  optimizer  (GWO),  butterfly

optimization  algorithm  (BOA),  and  whale  optimization  algorithm  (WOA),  indicating  the  excellent  search  capabilities  of  the  DSABO

proposed  in  this  paper.  In  noisy  environments,  the  model  incorporating  the  PAM  module  consistently  achieves  fault  recognition

accuracies  above  97%.  This  performance  exceeds  that  of  models  using  the  efficient  channel  attention  module  (ECAM)  and  spatial

attention module (SAM), demonstrating PAM’s excellent capability to highlight fault signals. In challenging environments with a signal-

to-noise ratio of –6 dB, the proposed model achieves a fault  diagnosis accuracy of 97.18%,  proving its  strong noise resistance.  Under

different load conditions of 0.75 kW, 1.5 kW, and 2.25 kW the proposed model maintains an average accuracy of 98.2% in environments

with  a  −4  dB  signal-to-noise  ratio.  This  demonstrates  the  model’s  excellent  adaptability  to  variable  working  conditions.  Comparison

results demonstrated that DSABO-PAM-FResNet outperforms other intelligent fault diagnosis methods in terms of diagnostic accuracy,

providing a new and effective intelligent method for rolling bearing fault diagnosis.

KEY  WORDS    bearing  fault  diagnosis； flexible  residual  neural  network； dynamic  subtraction  average  based  optimizer； parallel

attention module；noise interference

作为旋转部件的关键组件之一，滚动轴承能

够承载负荷，减少摩擦，确保设备平稳运行 . 滚动

轴承不仅能提高系统效率，降低能耗，还能延长设

备寿命 [1]. 在工业生产和交通运输等领域，滚动轴

承的可靠性直接关系到生产安全和运行稳定性，

因此保障滚动轴承正常运行是维持机械设备高效

运转的基础 [2]. 然而，由于长时间运转、高速旋转

和重负荷操作，滚动轴承往往面临摩擦、磨损、损

坏等问题，致使机械系统故障风险增加[3]. 因此，滚

动轴承故障诊断在机械工程领域扮演着至关重要

的角色，它可及时发现轴承故障，继而采取维护维

修措施降低事故风险，保证了生产现场的安全性[4].
当前深度学习展现了在大规模数据集中自动

提取特征的卓越能力 [5]，其强大适应性 [6] 和出色表

现 [7] 使其在轴承故障诊断领域备受瞩目 . 作为深

度学习的主要应用方法之一，卷积神经网络（Con-
volutional neural network，CNN）因其稀疏交互 [8]、参

数共享 [9]、空间池化 [10] 等能力，受到了大量学者的

关注与青睐 . 相应地，众多基于 CNN或其变种的

故障诊断方法被提出. Xu等 [11] 通过预训练离线卷

积神经网络初始化在线卷积神经网络参数，利用

预训练好的源域特征实现域适应，形成用于轴承

故障诊断的在线传递卷积神经网络；Sinitsin等 [12]

提出了一种基于混合 CNN-MLP模型的混合诊断

方法，将传感器采集的信号转换为混合输入数据

进行轴承故障诊断；Ruan等 [13] 基于轴承加速度信

号的物理特性，优化了 CNN结构与参数，提高了

轴承故障诊断准确率；Ayas等 [14] 设计了一种新型

深度残差学习网络以学习轴承时域图像与轴承故

障类型之间的端到端的映射，获得了较好诊断结

果；Zhang等 [15] 利用压缩感知进行降噪和特征提

取，稀疏处理设备振动数据，摆脱数据干扰和冗

余，提高诊断精度；Kong等 [16] 训练多个具有不同

激活函数的深度自编码器以获得不同类型特征，

对获得的特征进行评估并选择，将选择的特征输

入 CNN，从而获得较好识别效果. 上述方法将轴承

信号与 CNN结合，在处理简单轴承信号时取得了

较好诊断精度 . 然而，在实际工业中，轴承运行工

况多变，且常常混杂噪声，使得传统方法难以同时

应对工况和噪声两个方面的挑战.
针对以上问题，本文提出一种基于动态减法

平均优化器（Dynamic subtraction average based opti-
mizer，DSABO）和平行注意力模块 （Parallel  atten-
tion module，PAM）的柔性残差神经网络 （Flexible
Residual Neural Network，FResNet），用于滚动轴承

故障诊断，命名为 DSABO-PAM-FResNet. 一方面，

所提模型将 DSABO与 FResNet结合 ，在 DSABO
迭代中搜寻使 FResNet获得最佳性能的网络结构，
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提升网络训练效果 . 另一方面，在 FResNet网络结

构中嵌入 PAM，关注有效故障特征，抑制噪声干

扰 . 利用美国凯斯西储大学的滚动轴承故障数据

集，对所提模型在不同噪声干扰和变负载条件下

进行验证. 结果表明，本文模型在不同噪声和变负

载条件下均具有较好的识别精度.
本文的主要贡献如下：

（1）设计了一种基于 CNN的柔性残差模块. 该
模块允许在 DSABO迭代时更改卷积层数、卷积

核数和跳跃连接数，从而增强网络故障特征提取

能力并减少网络退化.
（2）提出了基于动态位置更新策略的 DSABO，

用于配置上述 FResNet的结构参数. 提出的 DSABO
具备跳出局部最优的能力，从而强化 FResNet的故

障诊断性能.
（3）设计了一种具有卷积层的 PAM. PAM融

合通道注意力和空间注意力输出权重，通过与滚

动轴承运行数据结合，实现数据特征增强. 

1    相关理论
 

1.1    卷积神经网络（CNN）
CNN是一种深度学习模型，主要由卷积层、

池化层和全连接层组成. 

1.1.1    卷积层

卷积层是 CNN最为重要的组成部分，主要用

于提取特征，其计算公式为：

Xl
j = f

 n∑
i∈M j

Xl−1
i ×wl

i j+bl
j

 （1）

Xl
j l j M j l−1

j Xl−1
i wl

i j

bl
j f (·)

其中， 为第 层的第 个元素； 为第 层的第

个卷积区域； 为对应卷积区域中的元素；

为对应卷积核的权重； 为偏置项； 为激活函数.
 

1.1.2    池化层

池化层常用于减少非必要的特征数量，同时

防止过拟合 . 在 CNN中，最大池化应用最为广泛，

其计算公式为：

Pl
k =max(ul

k) （2）

ul
k l k Pl

k其中， 是 层的第 个区域， 是该区域的最大池

化输出. 

1.1.3    全连接层

z

Q S

输入数据经过多个卷积层和池化层后，提取

的特征交由全连接层进行非线性整合，再经 Softmax
分类，作为网络输出 . 对于任意一个输入的 维向

量 ，其经由 Softmax的输出 为：

S j =
eQ j

z∑
i=1

eQi

, j = 1, · · ·,z （3）

S j S j Q j Q j

e

其中 ， 为 的第 个元素 ； 为 的第 个元素 ；

为自然常数. 

1.2    减法平均优化器（SABO）

−v

减法平均优化器（Subtraction average based optim-
izer，SABO）的基本灵感来自数学概念，包括平均

值、种群个体位置的差异以及目标函数的差值 .
SABO利用种群个体的减法平均值更新个体在搜

索空间中的位置 [17]. 首先，减法平均优化器定义了

一个新的计算概念“ ”，定义如下：

A−vB = sign (F (A)−F (B)) (A−V ∗B) （4）

A B sign (·)
F (·) V

m {1,2}
∗

其中， 和 表示种群个体位置； 为符号函

数； 为适应度函数； 表示一个维度等于决策

变量个数 的随机向量，其中元素在集合 中随

机生成； 表示哈达玛积.
减法平均优化器利用所有种群个体的算术平均

位置进行位置更新，其位置更新的数学表达式如下：

DNk
i = Dk

i + ri ∗
1
N

N∑
j=1

(
Dk

i−v Dk
j

)
（5）

Dk+1
i =

DNk
i , F

(
DNk

i

)
< F

(
Dk

i

)
Dk

i , F
(
DNk

i

)
⩾ F

(
Dk

i

) （6）

Dk
i k i DNk

i

k i

Dk+1
i k+1 i

ri m [0,1]

N

其中， 表示第 次迭代中的第 个个体位置；

表示第 次迭代中第 个个体基于当前位置的理论

更新位置； 表示第 次迭代中的第 个个体

位置； 表示维度为 的随机向量，包含元素为

内的随机数且满足正态分布； 为种群个体总数.
减法平均优化器使用所有种群个体的算术平

均位置，而不是仅仅使用最佳或最差种群个体的

位置来更新所有种群个体的位置，具有全局寻优

能力强，不易陷入局部最优等特点. 

2      基于 DSABO-PAM-FResNet的轴承故
障诊断模型
 

2.1    故障诊断模型框架

在实践中，滚动轴承的故障诊断面临着许多

挑战 . 首先，对于从实际工业应用中获得的信号，

大量噪声是不可避免的. 其次，现实中复杂多变的

工况会极大影响轴承信号. 对此，本文提出了一种

基于 DSABO和 PAM的 FResNet（命名为 DSABO-
PAM-FResNet），用于滚动轴承故障诊断. 所提 DSA-
BO-PAM-FResNet模型框架如图 1所示.
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从图 1中可以看出，基于DSABO-PAM-FResNet
的滚动轴承故障诊断模型核心在于柔性残差神经

网络、动态减法平均优化器和平行注意力模块三

部分. 

2.2    柔性残差神经网络（FResNet）
随着 CNN网络层数增加，可能会导致网络退

化问题，而残差神经网络（Residual network，ResNet）
可将较浅的堆叠层输出直接传递到较深的堆叠

层，从而减轻网络退化. ResNet思想是在传统 CNN
基础上添加跳跃连接，通过在网络中添加跨越层

的直接连接，将输入信号与输出信号相加. 这种直

接连接允许网络学习残差部分，即输入与输出之

间的差异，而不是直接学习整个映射[18].

c

a

ResNet有利于缓解网络退化、减轻恒等映射

学习难度，但其结构、参数难以确定，影响了特征

提取能力 . 例如，当卷积层数和卷积核数过少时，

网络的特征提取能力不足；而当卷积层数和卷积

核数过多时，网络退化风险则会增加 . 此外，当跳

跃连接数过少时，ResNet可能无法有效缓解网络

退化；相反，当跳跃连接数过多时，又会导致过拟

合的风险提高. 对此，本文设计一种结构和参数可

变的 ResNet，也即柔性残差神经网络 . FResNet的
基本思想是在优化算法的迭代中改变柔性残差模

块包含的卷积层数、卷积核数和跳跃连接数，找寻

并配置使 FResNet达到最优训练效果的结构参数.
设置跳跃连接的卷积层由跳跃连接数 与卷积层

数 决定，定义为：

Ct =

[a
c
× t+0.5

]
, t = 1,2, · · ·,c （7）

Ct [·]其中， 表示设置跳跃连接的卷积层； 表示取整

函数.

c a

s

c a s

图 2示出了带有跳跃连接数 、卷积层数 和

卷积核数 的柔性残差模块结构 . 如图 2所示，当

跳跃连接数 、卷积层数 或卷积核数 发生改变

时，柔性残差模块能够自动改变自身结构和参数 .
因此，基于柔性残差模块构建的 FResNet能够随着

优化算法的迭代配置结构参数，从而搜寻最优结

构. 示例性地，FResNet与 SABO的整合流程如图 3
所示.
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图 2    柔性残差模块结构

Fig.2    Structure of the flexible residual module
 

首先，将柔性残差模块的结构参数作为优化

算法的优化目标，将模型损失作为适应度函数. 当
优化算法迭代时，会将柔性残差模块需要的卷积层

数、卷积核数、跳跃连接数等参数提供给 FResNet，
依据这些参数，建立包含特定结构的 FResNet. 最
后依据模型损失判断结构优劣并继续优化参数，

直到达到预期目标. FResNet既保留了 ResNet减少

网络退化的能力，还有利于克服 ResNet由于配置

不当而导致训练过拟合、准确率难以提升的问题，

从而提升网络可靠性和泛化性能. 

2.3    动态减法平均优化器（DSABO）
SABO基于所有种群个体的算术平均位置更

新位置，具有较好的全局搜寻能力 . 然而，在算法

迭代后期，由于 SABO的局部搜索能力较弱，使得
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Fig.1    DSABO-PAM-FResNet model framework for fault diagnosis
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k K
k
K
⩽ 0.5

搜索结果难以快速接近理论最优值，导致 SABO
收敛速度慢、收敛效果不好 . 对此，本文提出一种

基于动态位置更新策略的动态减法平均优化器

（DSABO） . 设当前迭代次数为 ，总迭代次数为 ，

当 时，位置更新策略的数学表达式如下：

DAk
i =

k
K
× D0+

(
1− k

K

) Dk
i

2
+ ri ∗

1
N

N∑
j=1

(
Dk

i−v Dk
j

)
（8）

Dk+1
i =

DAk
i , F

(
DAk

i

)
< F

(
Dk

i

)
Dk

i , F
(
DAk

i

)
⩾ F

(
Dk

i

) （9）

D0 DAk
i k

i

其中， 表示全局最优位置； 表示基于第 次

迭代中第 个个体基于当前位置和全局最优位置的

理论更新位置.
k
K
> 0.5当 时，位置更新策略的数学表达式如下：

DBk
i = D0+ ri ∗

1
N

N∑
j=1

(
Dk

i−v Dk
j

)
（10）

Dk+1
i =
DNk

i , if F
(
DNk

i

)
ismin
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F
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DNk

i

)
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i

)
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(
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i

)}
DBk

i , if F
(
DBk

i

)
ismin

{
F

(
DNk

i
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,F

(
DBk

i
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(
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Dk
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F
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(
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i
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,F

(
Dk

i

)}
（11）

DBk
i k i

DNk
i

min {·}

其中， 表示基于第 次迭代中第 个个体基于全

局最优位置的理论更新位置； 由式（5）给出；

表示取最小值函数.
k
K
⩽ 0.5在算法迭代初期（ ），种群个体的位置

k
K
> 0.5

更新受到当前位置和全局最优位置的共同影响：

当算法开始迭代时，种群个体的位置更新受到当

前位置的影响较大，保证了算法的全局寻优能力；

随着算法迭代进行，全局最优位置对位置更新的

影响开始增大，从而增强算法的局部寻优能力. 在

算法迭代后期（ ），种群个体的位置更新由

当前位置、基于当前位置的理论更新位置和基于

全局最优位置的理论更新位置择优决定，增加了

种群多样性，提高了优化算法的收敛速度和寻优

能力. 

2.4    平行注意力模块（PAM）

在神经网络中，注意力机制允许模型在处理

输入数据时动态关注输入的不同部分，而不是像

传统神经网络一样对整个输入一视同仁，这种机

制将有助于提高模型性能. 受此启发，本文设计了

一种平行注意力模块（PAM），从通道和空间两个

维度对输入数据提取依赖关系.
如图 4所示，输入数据经通道注意力子模块，

首先对输入数据在每一个通道上分别进行平均池

化和最大池化，从而得到长度与通道数相同的两

组特征数据，再将两组特征数据分别经由两个不

同的卷积核数量为 1的卷积层，将两个卷积层的

输出相加，作为通道注意力子模块的输出权重.
同时，如图 5所示，输入数据经空间注意力子

模块，首先对输入数据的每个区域分别进行最大

池化和平均池化，将分别得到的两组数据叠加成

通道为 2的一组数据，经过一层卷积核为 1的卷积

层，得到卷积层输出，作为空间注意力子模块的输

出权重.
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图 3    SABO-FResNet的整合流程

Fig.3    SABO and FResNet integration process
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[0,1]

最后将通道注意力子模块和空间注意力子模

块的两组输出权重经由卷积层输出，经由 sigmoid
激活函数转化到 的范围内，与输入数据融合

得到输出数据. PAM流程如图 6所示.
  

Channel
attention

Conv

Spatial
attention

图 6    PAM流程

Fig.6    PAM process
 

经由 PAM，对输入数据分别实现了获取有用

特征的通道和增强网络对数据中关键区域的空间

感受能力 . 通过将 PAM嵌入神经网络中，逐层强

化网络训练性能，提高网络对特征的提取能力，提

高了网络的泛化性和适应性. 

3    方法验证
 

3.1    数据集说明

美国凯斯西储大学（Case western reserve univer-
sity，CWRU）提供的滚动轴承故障数据集已被广泛

用于评估不同故障诊断技术的有效性 [19]. 因此，本

文也利用 CWRU轴承数据集对所提出的方法进行

验证. 轴承故障试验台如图 7所示.

验证选用型号 SKF6205的深沟球轴承，轴承

故障为电火花加工单点故障. 故障直径分别为 0.18、
0.36、0.54 mm，轴承转速为 1797 r·min–1，在 12 kHz
采样频率下分别采集驱动端轴承的内圈、外圈和

滚动体故障，外加一种正常状态，总共 10种类别，

每种类别有 0、0.75、1.5、2.25 kW四种负载状况.
样本长度取为 1024个数据点 ，训练集包含

600个样本，验证集包含 200个样本，测试集包含

200个样本. 数据集描述如表 1所示. 

3.2    DSABO的性能分析

为验证本文提出的DSABO的性能优越性，选择

灰狼优化算法（Grey wolf optimizer，GWO）[20]、蝴蝶优

化算法（Butterfly optimization algorithm，BOA）[21] 和鲸

鱼优化算法（Whale optimization algorithm，WOA） [22]

与 DSABO进行对比. 考虑到各个优化算法的公平

性，种群大小和最大迭代次数等基本参数设置相

同 . 另外，为避免偶然性的影响，结果取重复运行

10次的平均值 . 图 8描述了在信噪比–6～0 dB环

境下不同优化算法的故障诊断结果.
从图 8中可以看出，不同噪声环境下（信噪比

–6～0 dB），基于 DSABO的诊断模型的准确率均

在 97% 以上，高于基于 GWO、BOA和 WOA的诊

断模型 . 因此，本文构建的 DSABO-PAM-FResNet
模型具有更优性能. 

3.3    PAM的性能分析

为验证本文提出的 PAM相比其他注意力模块

在特征提取能力上的优越性，基于信噪比–6～0 dB

 

Maxpool

Averagepool Conv

Conv

图 4    PAM内部的通道注意力子模块

Fig.4    Channel attention submodule in the PAM

 

Maxpool

Averagepool

Conv

图 5    PAM内部的空间注意力子模块

Fig.5    Spatial attention submodule in the PAM

 

图 7    CWRU数据集轴承故障试验台

Fig.7    Bearing fault test bed used in the CWRU dataset

 

表 1    CWRU数据集描述

Table 1    Description of selected data from the CWRU dataset

Fault location Normal Inner race Ball Outer race

Fault diameter/mm 0 0.18 0.36 0.54 0.18 0.36 0.54 0.18 0.36 0.54

Label 0 1 2 3 4 5 6 7 8 9

Training set 600 600 600 600 600 600 600 600 600 600

Validation set 200 200 200 200 200 200 200 200 200 200

Testing set 200 200 200 200 200 200 200 200 200 200
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环境，使用 CWRU数据集对本文模型进行测试 .
对比注意力模块为高效通道注意力模块（Efficient
channel attention module，ECAM）[23] 和空间注意力模

块 （Spatial  attention  module，SAM） [24]；模型载体为

DSABO-FResNet. 取 10次结果的平均值 . 于是，不

同注意力模块的诊断结果如图 9所示.
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图 9    不同注意力模块的诊断结果

Fig.9    Diagnosis results of different attention modules
 

由图 9可知，不同噪声环境下（信噪比–6～0 dB）
基于 PAM的诊断模型的准确率均在 97% 以上，高

于基于 ECAM的诊断模型和基于 SAM的诊断模

型，证明 PAM模块更具故障特征提取能力. 

3.4    强噪声环境下滚动轴承故障诊断

实际工业生产中，滚动轴承的振动信号常受环

境噪声影响. 为更准确评估所提模型性能，将信噪

比–6～0 dB的高斯白噪声添加到 CWRU数据集中

的原始振动信号. 验证中，选择 JL-CNN[25]、NCNN[26]、

Deep TL CNN[27]、TCNN[28] 用于对比分析：

(1) JL-CNN[25]：主要包括一个联合特征编码网

络和两个基于注意力的编码器网络，能够同时将故

障诊断任务和信号去噪任务集成到 CNN架构中；

(2) NCNN[26]：是一个结构复杂度低的稳定数

据驱动模型，采用批量归一化消除特征分布差异，

从而保证模型在不同工况下的泛化能力的前提；

(3) Deep TL CNN[27]：通过小波变换将原始传

感器数据转换为图像，利用源域图片数据集进行

预训练，并在目标域图片数据集上微调模型参数；

(4) TCNN[28]：首先基于大型源任务数据集构建

和预训练 CNN，然后基于目标任务再次训练 CNN，

从而得到针对目标任务深度模型.
本文模型与以上四种先进模型进行对比验

证，所有验证均重复 10次取平均值 . 图 10描述了

不同噪声环境下的模型诊断结果.
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图 10    不同噪声环境下的模型诊断结果

Fig.10    Diagnosis results of models in different noise environments
 

由图 10可知，在信噪比–6～0 dB的噪声环境

下，本文提出的模型均有 97% 以上的准确率. 并且

可以看出，本文模型的平均准确率为 98.56%，均高

于其他模型 . 特别地，在信噪比为–6 dB的环境下

本文模型仍有 97.18% 的准确率，这说明本文模型

有着较高的故障识别准确率和抗噪性能. 

3.5    变工况条件下滚动轴承故障诊断

实际工业生产中，滚动轴承的负载条件经常

发生变化，因此模型需要具有在不同负载下诊断

故障的能力. 基于表 1，选择 CWRU轴承故障数据

集中 0.75、1.5和 2.25 kW负载条件的数据进行变

工况轴承故障诊断. 训练集包含 600个样本，验证

集包含 200个样本，测试集包含 200个样本.
由于实际生产中存在环境噪声对轴承故障诊

断的干扰，因此在原始信号中加入信噪比为–4 dB
的高斯白噪声，以模拟真实的工业环境 . 选择 DF-
CNN[29]、HCNN[30]、STIM[31] 和 TSFFCNN[32] 与本文

模型进行比较：

(1) DFCNN[29]：将原始信号转换为二维图像，

并通过包含两个 dropout层和两个全连接层的 CNN
提取特征，从而消除专家经验对特征提取过程的

影响；

(2) HCNN[30]：是一种基于 CNN的深度学习方

法，该方法使用了基于 ReLU激活函数和高斯窗函
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图 8    不同优化算法的故障诊断结果

Fig.8    Diagnosis results of DSABO, GWO, BOA, and WOA
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数的局部对比度归一化；

(3)  STIM[31]：将一维振动信号转换为二维灰

度图像，从灰色图像中提取故障特征并实现故障

分类；

(4)  TSFFCNN[32]：建立了 1D-CNN和 2D-CNN

并行的双通道网络模型，并采用粒子群算法优化

支持向量机以获得更高的精度.
本文模型与以上四种先进模型进行对比验证.

所有验证重复 10次，诊断结果取平均值 . 图 11描

述了变工况条件下的模型诊断效果.
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图 11    不同噪声环境下的模型诊断结果

Fig.11    Diagnosis results of models in different noise environments
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在图 11中， 表示将在负载 0.75 kW
下训练的模型迁移到负载为 1.5 kW下进行故障诊

断（训练集选择负载为 0.75 kW的数据，验证集和

测试集选择负载为 1.5 kW的数据） . 从图 11可以

看出，本文模型在数据集分布相似的情况下，能够

获得较好的识别效果，例如 和

的准确率都在 99% 以上；而在数据集分布差别较

大时，例如 ，则识别效果略有下降，但仍

有 96% 以上的识别准确率. 此外，本文模型的平均

准确率为 98.2%，均高于其他对比模型，说明本文

模型有着较高的故障识别准确率和泛化能力. 

4    结论

本文提出了一种基于动态减法平均优化器和

平行注意力模块的柔性残差神经网络（DSABO-
PAM-FResNet），解决了传统轴承故障诊断网络特

征提取不充分、诊断精度低的问题，采用美国凯斯

西储大学滚动轴承故障数据集对本文方法进行验

证，结论如下.
(1) 相比于 GWO、BOA和 WOA，本文提出的

基于动态位置更新策略的 DSABO具有更高的搜

索精度.
(2) 相比于 ECAM和 SAM，本文提出的 PAM

能够进一步增强神经网络的特征提取能力，进而

提升故障诊断效果；

(3) 在不同噪声环境中，本文模型准确率均高

于其他智能诊断模型，特别在信噪比–6 dB环境下

仍有 97.18% 的准确率，说明本文模型具有较好的

抗噪能力.
(4) 在变工况条件下，本文模型的平均准确率

约为 98.2%，准确率相比其他智能诊断模型平均高

出 4.84%，说明本文模型具有良好的变工况诊断适

应能力.
需要指出的是，本文提出的DSABO-PAM-FRes-

Net模型在美国凯斯西储大学的滚动轴承故障数

据集上具有较好的识别精度，但在实际应用中仍

然受到源域和目标域数据分布的限制 . 当源域和

目标域的轴承数据集分布差异巨大时，所提模型

的轴承故障诊断精度将难以得到保证. 因此，未来

的研究将集中于不同分布数据集上的迁移学习，

以确保滚动轴承在不同场景下的故障诊断效果.
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