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ABSTRACT To accurately measure carbon emissions from open-pit mines in alpine ecologically fragile areas, a rigorous and
comprehensive accounting method is essential. This method must account for both direct emissions from mining operations and indirect
emissions from ecological disturbances. The unique challenges of high-altitude environments require a sophisticated carbon accounting
approach that tracks emissions from both mining activities and their broader ecological impacts on carbon sinks and sources. This study
begins by examining the carbon cycle mechanisms unique to open-pit mines in these fragile regions, characterized by high altitudes, low
temperatures, and delicate ecosystems susceptible to disturbances. Leveraging life cycle theory, we define the accounting boundaries to
encompass all stages of the mining life cycle, namely extraction, transportation, beneficiation, and auxiliary processes. A key aspect of
this research is the meticulous examination of direct and indirect carbon emissions across various mining stages. The energy-intensive
nature of mining, along with the substantial transportation requirements over challenging terrains, significantly contributes to the carbon

footprint. Additionally, beneficiation processes involving the separation and refinement of raw materials are highly energy-consuming,
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increasing indirect emissions. By mapping these processes and analyzing their carbon emission contributions, we enhance the
understanding of the carbon cycle’s impact owing to high-altitude mining. The study also elucidates the structure of carbon sources and
sinks within these fragile ecosystems. We compile a detailed carbon emission source inventory for open-pit mines, providing a
comprehensive reference for emission sources and natural carbon sinks, such as soil and vegetation, potentially compromised by mining
activities. This inventory is instrumental in developing a more precise accounting model. We have developed a carbon emission
accounting model that integrates mining production stages with changes in carbon sinks owing to mining-induced disturbances. This
model specifically accounts for the increased energy consumption of mining equipment at high altitudes, leading to higher carbon
emissions owing to reduced operational efficiency. The model offers a nuanced estimate of total emissions by incorporating these
factors. The model was validated using a case study of an open-pit metal mine in Tibet, a region renowned for its alpine ecology and
environmental fragility. Applying the model revealed total carbon emissions of 1.76295x10° t CO, for 2023, reflecting the combined
direct and indirect impacts of mining on the ecosystem. This case study demonstrates the model’s effectiveness and underscores the
considerable carbon footprint of mining in alpine regions. This research provides a theoretical foundation for carbon emission accounting
and management in high-altitude, ecologically sensitive mining areas. It presents a detailed and scientifically rigorous accounting method
supporting sustainable mining practices. The findings and model offer practical insights for industry stakeholders and a data-driven
framework for policymakers aiming to reduce the environmental footprint of mining in vulnerable ecosystems. This study paves the way
for sustainable resource extraction in ecologically sensitive zones, supporting efforts to minimize the carbon footprint of mining
operations in high altitudes.

KEY WORDS alpine ecologically fragile areas; open-pit mines; carbon emission accounting; carbon sink loss; carbon cycle
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Table 1 Inventory of carbon emission sources in open-pit mining

Production processes

Major equipment

Direct carbon emission sources

Indirect carbon emission sources

Perforation Rotary drill — Electric energy, carbon sink loss
Blasting Charging truck Diesel oil, explosive Carbon sink loss
Shoveling Electric shovel, hydraulic shovel Diesel oil Electric energy, carbon sink loss
Electric truck, fuel truck Diesel oil Electric energy
Transport )
Belt conveyor — Electric energy
Crushing Crusher — Electric energy

Mineral processing

Tailings reservoir

Auxiliary operation

Ball mill, flotation machine

Thickener, centrifugal pump

Land leveler, sprinkler truck

Petrol, diesel oil

Electric energy

Electric energy, carbon sink loss

Electric energy, carbon sink loss
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Table 2 Shoveling equipment performance parameters
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W 1L M 55 4 B P9 B 481 2 R Y AR, AR
N0 L B AF BE BRI K o, R R L3R 4.
33 BmHBZERERSW
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SRHEROZ B 5 i 8 EE (AT ) ) & IPCC 45

. Bucket Energy . .
Equipment type capacity/m’  consumption type Unit efficiency > 33-34] 3 4 ]
paety P 1 TP A R A B0, O B 255 0 R H IR
WK-35 35 Electric ener; 0.75 kW-h-m™ - N
& DA A BRE T SR A A H g s HE IR T, X
Hitachi 890 5 Diesel oil 0.17 L'm™ s e -
B HE TR AT ARG, RS A R A 5 K s B
Volvo 950 5.5 Diesel oil 0.24 L'm™ — Ve 7 N s
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Table 3 Transportation equipment performance parameters
Equipment type Energy consumption type Rated volume/m’ Hourly efficiency/(m’*-h™") Ton-kilometer energy consumption
NTE260 Diesel oil 75.33 153 0.11L-t"km™
NTE240 Diesel oil 75.33 153 0.11 Lt "km™
TR100 Diesel oil 31.34 55 0.19 Lt "km™
w110 Electric energy 31.34 64 0.13 kW-h-t km!
EERI IR Electric energy 28.62 45 0.13 kW-h-t"-km™
R4 T ILRSFERNBACHIK S5
Table 4 Total amount of carbon sink loss during the service life of the mine
Number Site Total damaged Veeetation type Soil carbon Loss of soil carbon ~ Loss of vegetation
area/hm’ & yp density/(kg-m™) sink/(t CO,) carbon sink/(t CO,)
o Moss, cushion-shaped
1 Open-pit mining area 503.57 herbs, or small shrubs 12.2 61435.54 416.30
2 Mining industrial sites 47.53 Alpine meadow 12.2 5798.66 39.29
3 Mineral processing 74.52 Alpine meadow 14.6 10879.92 61.61
industrial site
4 Tailings pond 643.89 Farmland and 152 97871.28 532.30
grassland
5 Waste disposal site 793.39 Moss, cushion-shaped 122 96793.58 655.90
herbs, or small shrubs
6 Topsoil storage yard 41.91 Alpine meadow 12.2 5113.02 34.65
Supporting
7 enginecring 273.35 Watered land, natural 56583.45 225.98
grassland, and inland 20.7
8 Other temporary 33.83 mudflat 7002.81 27.97
production sites ' ’ ’
Total 2411.99 — — 341478.26 1993.99
Total loss/(t CO,) — — — 343472.25
Annual average loss/(t CO,) — — — 16355.82
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Table 5 Carbon emissions from Julong copper mining in 2023
Number Production processes Emission type Emission amount/(t CO,) Proportion/%
1 Perforation Indirect emission 1211.30 0.69
2 Blasting Direct emission 3686.85 2.09
3 Shoveling Direct/Indirect emission 7762.29 4.40
Truck transportation Direct/Indirect emission 48279.29
4 Transportation . X L 25.80
Belt transportation Indirect emission —2926.08
5 Crushing Indirect emission 672.15 0.38
6 Mineral processing Indirect emission 99824.35 56.57
7 Auxiliary operation Direct/Indirect emission 1429.70 0.81
8 Carbon sink loss Indirect emission 16355.82 9.27
Total carbon emission Direct/Indirect emission 17.6295x10* 100
Preforation [ Perforation
1211.2984 === Emission amount/(t CO,) Perforation Blasting [ Blasting
120000 Carbon sink loss 7 0% ovelin — ??f,“'fpli:?f
Carbon sink loss 100000 Blasting 9.27% dd e W Crushing
16355.8200 80000 3686.8462 Auxiliary operation = Xﬂfﬂz@?&:;ﬁ
60000- 0.81% [ Carbon sink loss
40000
0000
Transport
Auxiliary hovelli 25.8%
1429.7037 7762.2884
Crushing
\/0.38%
Mineral processing
Mineral processing Transport 56.36%
99824.3457 45520.6758
Crushing
672.1494
(@) (b)
B 5 O REFERATRRHEL . () &4 W BHE B T AR (b) 2 47 R AR A L
Fig.5 Carbon emission ratio of different mining processes: (a) carbon emission radar charts for each production process; (b) proportion of carbon

emissions in each production process
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Fig.6 Carbon emission ratio of different types of energy consumption
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Fig.7 Direction of carbon emissions from open-pit mining
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