
机器学习在有机固体废物资源化的应用进展

马鸿志 刘忆婵 赵继华 费凡 高明 汪群慧 

Advances in machine learning applications to resource technology for organic solid waste
MA Hongzhi, LIU Yichan, ZHAO Jihua, FEI Fan, GAO Ming, WANG Qunhui

引用本文:
马鸿志, 刘忆婵, 赵继华, 费凡, 高明, 汪群慧. 机器学习在有机固体废物资源化的应用进展[J].  北科大：工程科学学报,
2025, 47(3): 550-561. doi: 10.13374/j.issn2095-9389.2024.07.10.001
MA Hongzhi, LIU Yichan, ZHAO Jihua, FEI Fan, GAO Ming, WANG Qunhui. Advances in machine learning applications to
resource technology for organic solid waste[J]. Chinese Journal of Engineering, 2025, 47(3): 550-561. doi: 10.13374/j.issn2095-
9389.2024.07.10.001

在线阅读 View online: https://doi.org/10.13374/j.issn2095-9389.2024.07.10.001

您可能感兴趣的其他文章

Articles you may be interested in

机器学习在镁合金应用中的研究进展

Applications of machine learning on magnesium alloys

工程科学学报. 2024, 46(10): 1797   https://doi.org/10.13374/j.issn2095-9389.2024.03.10.002

钒资源现状及有机磷类萃取剂萃钒的研究进展

Current status of vanadium resources and research progress on vanadium extraction with organic phosphorus extractants

工程科学学报. 2021, 43(5): 603   https://doi.org/10.13374/j.issn2095-9389.2020.09.29.004

废旧风力发电机叶片资源化利用研究进展

Progress in resource utilization of waste wind turbine blades

工程科学学报. 2023, 45(12): 2150   https://doi.org/10.13374/j.issn2095-9389.2022.10.10.002

机器学习在非晶合金开发中的应用

Machine learning in designing amorphous alloys

工程科学学报. 2023, 45(9): 1517   https://doi.org/10.13374/j.issn2095-9389.2022.11.11.002

专家知识增强的机器学习建模在高强高导铜合金开发中的应用

Application of expert-augmented machine learning modeling in high-strength and high-conductivity copper alloy development

工程科学学报. 2023, 45(11): 1908   https://doi.org/10.13374/j.issn2095-9389.2022.09.19.002

机器学习在金属材料服役性能预测中的应用

Application of machine learning for predicting the service performance of metallic materials

工程科学学报. 2024, 46(1): 120   https://doi.org/10.13374/j.issn2095-9389.2023.03.07.002

http://cje.ustb.edu.cn/
http://cje.ustb.edu.cn/
http://cje.ustb.edu.cn//article/doi/10.13374/j.issn2095-9389.2024.07.10.001
http://cje.ustb.edu.cn//article/doi/10.13374/j.issn2095-9389.2024.03.10.002
http://cje.ustb.edu.cn//article/doi/10.13374/j.issn2095-9389.2020.09.29.004
http://cje.ustb.edu.cn//article/doi/10.13374/j.issn2095-9389.2022.10.10.002
http://cje.ustb.edu.cn//article/doi/10.13374/j.issn2095-9389.2022.11.11.002
http://cje.ustb.edu.cn//article/doi/10.13374/j.issn2095-9389.2022.09.19.002
http://cje.ustb.edu.cn//article/doi/10.13374/j.issn2095-9389.2023.03.07.002
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摘    要    机器学习（ML）方法，以其卓越的数据解析和模式识别能力，已在有机固体废物（OSW）处理领域展现出显著的应用

潜力. 随着对 OSW处理需求的日益增长及技术革新的推进，ML在该领域的应用正迅速普及. 聚焦 ML技术在 OSW资源化

处理中的应用，首先界定了 OSW的范畴，针对 OSW处理中存在的异质性和复杂性问题，指出了传统处理技术在进行 OSW

产量预测和条件优化时的局限性. 通过对 2018—2023年相关学术成果进行系统梳理和分析，揭示了ML在 OSW处理中的研究

趋势和潜力. 特别是发现以人工神经网络（ANN）、支持向量机（SVM）、决策树（DT）、随机森林（RF）和极端梯度提升（XGBoost）

为代表的常用模型结合遗传（GA）优化算法，成为提高 OSW处理效率和资源回收率的研究热点. 分析了这些模型在源头产生

与分类、热化学转化处理、厌氧生物处理和好氧堆肥等具体应用中的现状及应用频率，同时评估了它们的优缺点及适用性.

研究发现，ML技术能够有效提高 OSW处理的预测精度和工艺优化能力，尤其是在废物特性预测和生物处理过程模拟方面

展现出显著优势. 然而，数据质量、模型的泛化能力以及算法选择仍然是 ML技术应用中的关键挑战. 为此，提出开发综合模

型、加强跨学科技术融合等一系列解决策略，以期为 OSW资源化提供科学指导和技术支持.

关键词    有机固体废物；机器学习；资源化；高效处理；建模预测；过程优化
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ABSTRACT    Machine  learning  (ML)  techniques,  with  their  advanced  data  analysis  and  pattern  recognition  capabilities,  are  highly

effective  for  addressing  the  complexities  of  organic  solid  waste  (OSW)  treatment  and  resource  recovery.  As  global  waste  generation

continues  to  increase,  the  need  for  efficient  and  sustainable  OSW  management  solutions  is  growing.  Traditional  waste  treatment

technologies often face challenges in managing the heterogeneous and complex nature of OSW, which varies widely in composition. In

contrast,  ML can optimize treatment  processes,  improve resource recovery rates,  and enhance decision-making.  This  study explores  a

range of commonly used ML models, including artificial neural network (ANN), support vector machine (SVM), decision tree, random

forest, and extreme gradient boosting (XGBoost). These models have been used to predict waste characteristics, classify diverse types of 
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OSW, and optimize treatment parameters across various processes, such as thermochemical conversion, anaerobic digestion, and aerobic

composting.  A key focus  of  this  work  is  the  combination  of  ML models  with  optimization  algorithms like  Genetic  Algorithm,  which

improves  the  performance  of  ML  models  by  optimizing  hyperparameters  and  enhancing  prediction  accuracy.  This  approach  is

particularly  useful  in  complex  processes  such  as  biological  treatment  and  resource  recovery,  where  ML  models  can  predict  waste

characteristics and optimize treatment conditions. This work also presents a comprehensive analysis of the application frequency of these

ML  models  in  various  stages  of  OSW  treatment,  including  source  generation,  classification,  and  treatment  processes  like  pyrolysis,

gasification,  and  composting.  This  analysis  identifies  the  strengths  and  weaknesses  of  each  model,  highlighting  the  importance  of

selecting  the  most  appropriate  ML  approach  based  on  the  specific  characteristics  of  the  OSW treatment  task.  ANN,  for  example,  is

particularly useful for complex, nonlinear relationships within biological treatment processes, while SVM is effective for small datasets

and high-dimensional  data.  Despite  the  promise of  ML in  OSW management,  there  are  key challenges  that  remain unresolved.  These

include issues related to data quality, such as missing or incomplete datasets, and the generalization ability of ML models across different

treatment scenarios. Furthermore, selecting the right ML model for a specific task requires careful consideration of the data structure, the

complexity of the problem, and the desired outcomes. The full potential of ML in OSW treatment may not be realized without addressing

these  challenges.  This  work  proposes  strategies  for  overcoming  these  challenges  and  improving  the  effectiveness  of  ML  in  OSW

treatment.  One  strategy  involves  developing  integrated  models  that  combine  multiple  ML  techniques  to  leverage  their  respective

strengths.  For  example,  the  ensemble  learning  method,  which  integrates  the  outputs  of  multiple  models,  has  been  demonstrated  to

improve  prediction  accuracy  and  robustness.  Another  strategy  is  the  use  of  reinforcement  learning  and  transfer  learning,  which

effectively address dynamic environments and small datasets, respectively. Finally, this work highlights the need for future research to

focus on the integration of ML models with real-time process monitoring and control systems. By linking ML with data-driven control

strategies,  such  as  model  predictive  control,  it  may  be  possible  to  develop  fully  automated,  intelligent  OSW  treatment  systems  that

optimize  resource  recovery  and  minimize  environmental  impact.  The  work  concludes  by  recommending  that  researchers  continue

exploring  the  combinations  of  ML  with  advanced  control  techniques  to  push  the  achievement  boundaries  in  sustainable  waste

management.

KEY  WORDS    organic  solid  waste；machine  learning； resource  utilization； efficient  treatment；modeling  and  simulation； process

optimization

有机固体废物（OSW）是在生产和生活活动中

产生的含有有机成分的固体废物，我国的 OSW包

含餐厨垃圾、城市污泥等生活源，农业秸秆、畜禽

粪污等农业源，菌渣、酒糟等工业源废弃物，涉及

面广，总量位居全球首位 [1]. OSW具有污染物和资

源的双重属性，若处理不当，将会造成严重的环境

污染和资源浪费 [2]. 目前，OSW的有效处理方法主

要包括生化处理（如好氧堆肥、厌氧生物处理）和

热转化处理（如焚烧、热解、气化）[3−5]. 两种处理方

法各有优势，但由于 OSW的来源多样性与成分异

质性 [6]，处理效果波动较大，工艺条件参数设置显

著影响处理效率，这无疑增加了处理技术的难度 .
鉴于此，本文将探讨提高 OSW处理效率和效果的

策略 . 首先，从废物管理的源头分析，揭示废物特

性模式和趋势，为后续处理提供先验知识；其次，

构建基于数据驱动的预测模型 ，估算不同来源

OSW的产量，模拟处理过程，优化操作参数，实现

产量和效率的最大化.
传统建模方法在处理 OSW问题时存在局限

性，特别是在成分异质性导致的实验结果差异和

预测精度降低方面 . 例如 Patra和 Lalhriatpuii[7] 采
用的线性回归模型在预测甲烷排放时对数据的高

精度要求和计算量，在异常值面前缺乏鲁棒性等 .
近年来，机器学习 (ML)作为人工智能的分支，展

示出强大的特征表示能力，可以克服传统方法缺

乏全局理解的局限，推动 OSW处理的智能化、精

细化和高值化 [8−10]. ML是一种能够自主获取和整

合知识的系统，近年来在水气固废物处理等环境

领域正逐渐展现出其巨大的潜力. ML的一般原理

是通过归纳推理，学习经验数据中的输入和输出

变量之间的关系，训练得出某种模型并以此在新

情况下做出决策 [11]，在处理复杂非线性问题时具

备节省时间、提高预测精度以及降低实验成本等

优势.
目前，已有多种 ML算法应用于 OSW管理与

处理，如神经网络用于废物特性评估、图像识别用

于垃圾分类、回归算法用于厌氧发酵和生物质转

化的模拟与优化. 尽管训练阶段需投入计算资源，但

其长期效益显著超越初期成本. 因此，ML在 OSW
循环利用中具有巨大的应用前景，值得深入研究 .
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本研究旨在探讨 ML技术在 OSW资源化领域的

研究现状和发展趋势，分析不同 ML模型在物理、

化学和生物处理中的适用性，评估其优势和局限

性，为 OSW的机器学习辅助处理提供全面的技术

路线图. 

1    机器学习在有机固体废物领域的模型构建

模型构建是 OSW资源化的关键环节，通过模

拟和分析废物处理过程，为高效回收和可持续发

展提供科学依据 . 如图 1所示，一个完整的 ML过

程通常涉及四个关键阶段：训练、交叉验证、测试

和应用.
模型构建的基础在于数据的质量和结构，需

要建立一个详尽的数据库，涵盖物理化学特性、微

生物种群、生物降解参数、环境影响评估等，并结

合文献和实验数据进行特征选择 . 数据预处理包

括缺失值填补、异常值剔除、数据归一化和特征

选择，以确保数据一致性和高质量.
选择适合的ML模型进行训练是关键. 基础ML

模型，如决策树（DT）、支持向量机（SVM）和人工

神经网络（ANN），在不同处理环节中已有广泛应

用 . 例如，SVM在分类任务中表现优异，而随机森

林（RF）在应对多变量和复杂性问题上优势明显 .
近年来深度学习（DL）模型，特别是卷积神经网络

（CNN）能够自动提取图像特征，大幅提升分类精

度，展现了在垃圾分类任务中的巨大潜力[12]. 此外，

集成学习方法，如 RF和极限梯度提升（XGBoost），
通过集成多个基本学习器来提高预测准确性和处

理效率，特别是在应对数据不平衡问题时表现尤

为出色[13].
在模型的训练过程中，超参数调优也是至关

重要的环节 . 超参数的选择直接影响模型的预测

精度和泛化能力 . 例如，在 XGBoost模型中，优化

基本学习器的超参数能够显著提高资源回收率的

预测精度 . 在 CNN中，通过调整网络层数和卷积

核大小，可以有效提升垃圾分类中的图像处理效

果. 交叉验证通常用于优化超参数，以防模型过拟

合，从而增强模型的泛化能力.
模型的评估一般通过测试集数据的决定系数

（R²）来衡量，R²值越接近 1，表明模型的预测准确

性越高. 经过验证的模型可以应用于 OSW处理的

不同环节，为工艺流程的优化提供决策支持 . 最
终，借助特征重要性评估和局部解释模型等方法，

揭示模型的决策过程，为 OSW处理提供更深入的

理解，从而指导实际工艺流程的优化设计，提高资

源回收率和处理效率[14]. 

2    机器学习在有机固体废物领域的应用现状

为了解机器学习（ML）在有机固体废物（OSW）

资源化领域的研究现状，本研究在 Web of Science、
Science Direct等数据库中，以“机器学习（machine
learning） ”、“有机固体废弃物 （organic  solid  was-
te）”、“生物质（biomass）”、“预测（prediction）”、“算

法 （algorithm）”、“模型优化 （model  optimization）”
和“处理（treatment）”等为关键词，检索了 2018至

2023年间的相关学术成果 . 通过筛选主题相关的

文章，统计了文献数量和研究领域的分布，结果如

图 2所示.
图 2展示了 OSW处理相关文献数量在 2018

至 2023年间的增长趋势. 从图 2(a)可见，ML在OSW
资源化中的研究热度逐年增加，热点集中在“废物

产生与分类”和“热化学处理”领域，尤其是厌氧消
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图 1    ML在 OSW中的模型构建与应用过程

Fig.1    Machine learning modeling and applications in the organic solid waste field
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化和好氧堆肥 . 随着对微生物生态和生物转化过

程的深入理解，ML在优化厌氧发酵产物（如中长

链脂肪酸）、热化学处理产物（如生物燃料）及堆肥

过程中的生物炭应用等方面展现出重要作用 [15−17].
ML的介入不仅提升了废物处理效率，还推动了高

值化产品的开发 . 图 2(b)进一步细分了热化学处

理技术的文献分布情况，包括焚烧、热解、气化和

水热处理. 数据显示，焚烧相关研究占据热化学处

理文献的最大比例，显示其在 OSW处理中的重要

性 . 然而，气化技术的文献数量显著增加，尤其是

在能源回收方面逐渐成为热点 . 热解技术在转化

为高附加值产品方面显示出潜力，ML模型为工艺

优化和产物预测提供了可靠工具. 相比之下，水热

处理文献较少，但因其在处理高水分废物中的优

势，未来仍具发展空间

综上，ML技术在 OSW资源化处理中已取得

显著进展，研究方向由基础处理技术向复杂废物

转化过程转变，着重提高资源回收率与环境效益. 

2.1    产生与分类

我国城市生活垃圾（MSW）中有机成分约占总

量的 60%，高水分含量影响了垃圾的热值和分类

回收效率 . 针对 OSW的管理，需要根据成分和处

理方式进行区分，确保有效管理. 管理过程会涉及

产生、收集、存储、分类等多个环节，合理利用ML方

法可以对相应的环节进行建模与优化. 近年来，ANN
模型在废物产生量预测中表现出优越性 .  Kulisz
和 Kujawska开发了一个 ANN模型来预测波兰废

物产生量 [18]，研究综合了社会、经济和人口因素，

预测 R2 达到 0.989. 类似地，Elshaboury等 [19] 采用

相同特征，集成粒子群优化（PSO）算法提高了 ANN
的预测精度 . 此外，Soni等 [20] 比较了六种不同的

ML模型，通过将 ANN与遗传算法（GA）集成准确

估计了印度新德里废物产量（R²=0.87） . 这些研究

结果不仅证实了 ANN模型在废物产量预测方面

的有效性，还展示了通过与其他算法集成可以进

一步提升预测精度的潜力.
随着垃圾分类的细化，OSW分类研究逐渐受

到重视 . 例如  Zheng等 [21] 使用 Fisher判别模型通

过高光谱成像对聚乙烯（PP）、聚氯乙烯（PVC）等
有机塑料废弃物进行分类，预测精度达 100%. Serranti
等 [22] 则通过红外高光谱成像系统（NIR-HIS）完成

了建筑垃圾中聚烯烃垃圾的分类 . 还有研究聚焦

在具备复杂成分的 OSW的分类与理化特性预测

上 . Toğaçar等 [23] 在 2020年首次提出了一种精确

度高达 99.95% 的卷积神经网络（CNN），对可回收

垃圾以及有机垃圾进行分类 . Tao等 [24] 在 2023年

提出了结合 ML模型与高光谱成像技术的新概念

设计，实现了垃圾分类及快速表征. 在参数与界面

优化后，ANN模型对 MSW中无机 /有机组分的分

类精确度接近 100%，对有机组分的 C、H、O、N元

素以及热值预测的精准率达到 90% 以上 . 这些成

果为 OSW的物理分拣系统设计提供了新思路，并

有助于热化学处理的过程管理以及生物处理的路

线决策. 

2.2    热化学处理

热化学处理涉及到 OSW的污染排放、能量回

收与化学转化，是减量化、能源化、资源化的关

键，通过焚烧、热解、气化等方式将 OSW转化为

热能，并输出电力或蒸汽等能源 . 此外，过程中还

能产生生物炭、液体燃料等有价值的化学物质，在

化学品、肥料和能源生产中具有重要应用 . ML技

术为 OSW的高效热化学转化提供了工艺建模的

新途径.
在减量化方面，研究多集中于焚烧过程中污

染物排放的预测与分析，例如一氧化碳 [25] 与二噁

英 [26]. Tavoosi等 [27] 利用非线性神经网络（RBFNN）

模型对生物质焚烧炉排放进行预测，有研究进一

步提出了一种多输出生物质控制系统的模型预测
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图 2    相关文章的分布与趋势统计. (a) OSW处理; (b)热处理技术

Fig.2    Distribution and trend statistics of related articles in organic solid waste (OSW) treatment: (a) OSW treatment; (b) heat treatment technology
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控制 [28]，有效提高了生物质锅炉系统的控制性能 .
ML技术还被用于预测垃圾焚烧飞灰中的重金属

含量，识别重金属的浸出模式 [29]，评估重金属固化

效果的影响因素 [30]，为飞灰的合理处置和利用提

供依据.
在能源化方面，精确预测热解过程的固液气

三相产物特性，是实现资源化调控的基础. Li 等 [31]

开发的 ANN综合模型成功预测了合成气的组成

和效率 . Zhao等 [32] 构建的氧化热解产物分布预测

模型 R²高达 0.992. Leng等[33] 建立了三相产物分布

和生物油热值预测模型，并确定了 480 °C为鼓泡

流化床中快速热解制油的最佳温度 . Shu等 [34] 建

立了基于干基或湿基物理构成与元素分析的多层

感知神经网络（MLP‒ANN）模型，用于城市生活

垃圾的低温热值预测，模型精度高达 98%. Taki和
Rohani[35] 对城市固废的高位热值进行建模，结果

显示径向基函数神经网络（RBF‒ANN）模型的预

测准确性最高 . 这些研究表明，ML在生物质气化

和热值预测方面具有重要应用潜力，能够有效提

升气相产物的品质.
在资源化方面，生物质在热化学处理中产生

的生物油和生物炭具有重要应用价值 . 生物油可

以进一步加工为生物燃料、生物化学品和生物材

料等高价值产品[36]. Aghbashlo等[37] 最近回顾了ML
在生物油研究中的应用，例如 Tang等 [38] 研究发现

RF模型在预测生物油产量及其氢含量方面优于

多元逻辑回归（MLR）模型 . 除了生产过程方面的

显著研究进展，对生物油的转化和利用过程的深

入研究同样至关重要. Ma等[39] 探索了使用乳化技

术在较低温度下生产乳化生物沥青的可能性，这

为生物油的可持续高值利用提供了一种新方法 .
结合 ML技术提出将体积分数为 10.37% 的生物油

和质量分数为 3.53% 的乳化剂结合使用的一种最

佳乳化工艺. 此外，生物油的生产成本也是商业化

的一个重大问题，Liu等[40] 成功对藻油和甲醇制备

生物油的过程进行了 ML模拟，确定最优工艺条

件从而提高整体的效率 . 未来的研究应侧重于使

用 ML技术对生物油系统进行实时过程监测和控

制，以提高产品产量. 生物炭作为一种具有高孔隙

率和养分供应能力的稳定碳质物质，近年来已被

广泛用作 OSW好氧堆肥的补充剂 . 随着 ML的引

入也取得了许多突破性的研究成果. 例如 Zhu等[41]

根据生物质特性和热解条件成功预测了木质纤维

素生物质的生物炭产量和碳含量（C-char），通过ML
建模证明了热解温度对二者的主导作用，为生物

炭生产的优化提供了新思路 . 未来的研究应进一

步探索生物炭在土壤改良和温室气体减排中的潜

力，并通过 ML模型细化热解条件对生物炭特性

的影响，实现高效生产. 

2.3    厌氧生物处理

厌氧生物处理通过厌氧和兼性微生物在无氧

条件下，将有机大分子降解为小分子物质，如挥发

性脂肪酸（VFAs）、醇类、甲烷和氢气等，这些产物

被视为可再生化学品的重要来源[42−43]. 根据反应程

度和产物类型可以将厌氧生物处理进一步分为厌

氧消化（AD)和厌氧发酵 (AF). AD包括水解、酸化

和产甲烷阶段，AF仅涉及上述的前两个步骤，通

过选择性抑制产气，可以回收各种高附加值的液

体产品，如乳酸、乙醇和短链脂肪酸 [44], 由于传统

机械模型在生物转化过程建模方面存在局限，近

年来，ML技术被广泛用于开发和优化厌氧生物处

理工艺[45]，显著提高了工艺的稳定性和效率.

NH−4

在 AD模拟中，大多数 ML应用集中于根据工

艺参数和原料特性预测和优化沼气生产 . 一些研

究通过 ANN模型实现沼气产生量的精准预测，R2

位于 0.87～1之间，GA进一步优化了产气量 [46−47].
其他 ML模型如 MLR、KNN、SVM、RF、XGBoost
等也被用于预测 AD性能 . Wang等 [48] 使用 RF和

逻辑回归多类  (GLMNET) 来预测甲烷产量，并使

用底物中的主要成分作为输入特征. 还有研究对AD
过程当中的氮、碳趋向进行了预测，如 Li等 [49] 建

立 ANN模型预测化学需氧量（COD）浓度、CH4 产

量、 -N浓度，模型的 R2 大于 0.7. Alejo等 [50] 通

过 SVM的运用，对两级 AD工艺中的总氨氮量进

行了预测，模型 R2 为 0.9. 反向传播神经网络（BP‒
ANN）被用于 AD碱度建模，表现出优异的性能（R²=
0.99）[48]. 总之，这些ML应用显著提升了OSW在AD
处理中的效率及稳定性.

对 AF流程的理解和优化同样受益于 ML模

型的应用 . Kazemi等 [51] 成功开发了一个 ML框架，

评估了 AF 过程中 VFA 浓度与操作条件之间的关

系，R²高达 0.999，且在故障检测（FD）的稳健性方

面也表现出色. Xu等 [52] 开发的 XGBoost模型在使

用操作条件作为输入来预测基于零价铁（ZVI）的
发酵性能上准确性最高. Vendruscolo等[53] 运用ML
识别了 AF系统中与生物气产量相关的关键功能

微生物，如Candidatus Cloacomonas、Methanospirillum
等，揭示了微生物群落结构的季节性变化规律，为

微生物管理提供了新的视角.
此外，ML技术还可以应用于更为复杂的厌氧
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生物转化平台. 例如，碳链延长（CE）技术作为一种

新兴的碳资源回收生物技术，是在 AF的基础上

首先通过厌氧混合菌将 OSW转化为液体产品作

为中间体，再通过反向 β氧化或脂肪酸生物合成

（FAB）途径延伸为具有更高经济价值的中链脂肪

酸（MCFA） . CE技术由于工艺的强可操作性和产

品的高产值优势而逐渐受到重视，但与 AD和 AF
相比，MCFA生产的动力学模型研究仍处于起步

阶段. 早期，Coelho等[54] 使用残余甘油和屠宰场废

水作为底物，通过 C. kluyveri 的生物动力学模型模

拟 CE过程 [55]. 然而，由于 CE过程的复杂性，更多

学者开始尝试利用 ML替代传统模型，由于 CE过

程的复杂性，越来越多的研究者尝试利用 ML模

型替代传统动力学模型，为不同动态条件下的MCFA
产量预测提供了新的解决方案，展现出广阔的应

用前景 . 例如 Long等 [15] 结合 XGBoost、RF、GA等

算法证明了 ML在促进 MCFA生产方面的可行性

（R2=0.89），同时优化了从食物垃圾中生产 MCFA
的条件，生产率提高了 113%[56]. 未来可以继续探

索如何将训练好的 ML模型与其他厌氧生物处理

控制策略相结合，以实现更加全面和自动化的过

程优化. 

2.4    好氧堆肥

好氧堆肥是一种用于稳定 OSW的生物化学

方法，主要处理易于微生物分解的有机物，如蛋白

质和纤维素，最终产物可用于土壤改良 [57]. 确保堆

肥产品的质量对于其在土壤中的有效和安全应用

至关重要. 然而，堆肥过程中伴随着氨气和温室气

体的排放，产品中还可能残留重金属和抗生素 [58].
这对环境和健康构成潜在风险. ML技术因其处理

非线性关系的能力，能够对复杂微生物参与的堆

肥反应进行建模，显著降低试错成本 . 根据统计，

最近的研究主要集中在堆肥腐熟度、工艺参数和

污染物排放的预测和优化上.
腐熟度是反映有机物降解和生物化学稳定度

的指标 . Sharma等 [59] 以  C/N、CO2 释放率和  GI（种
子发芽指数）为输入变量，预测了堆肥成熟度，结

果表明ANN模型的表现优于响应面算法，R2 为 0.94.
Muthuveni等 [60] 还根据堆肥成熟度指数评估了

ANN 在预测采用不同基质组合的蚯蚓堆肥过程中

的性能，研究结果表明，反向传播神经网络（BPNN）

显示出极佳的预测准确性（R2>0.99）. 此外，还有研

究将 CNN引入，克服了传统 ANN的特征提取限

制，对堆肥图像进行直接分析，来对堆肥的腐熟度

进行评估，并将模型准确度进行优化，且精确度超

出了 99%[61−62].
ML模型通常会结合优化算法对堆肥工艺进行

优化. Soto-Paz等[63] 通过 ANN和粒子群优化（PSO）

算法的集成，首次分析了两个操作参数（混合比、

翻堆频率）的同时变化对堆肥工艺和产品质量的

影响. Bayındır 等[64] 利用级联正向神经网络（CFNN）

对牛粪和城市固体废物共堆肥中的环境因素进行

建模，并结合 GA算法优化堆肥时间和材料混合比.
ML方法有助于对好氧堆肥中有害物质的控

制 . Alavi等 [65] 采用 ANN模型对堆肥过程中四环

素 （TC）的降解进行了有效模拟（R2=0.99）. 通过敏

感性分析得出时间在 TC降解中的决定性影响

（相对重要性为 80.43%） .  Yamawaki等 [66] 通过 RF
和 XGBoost模型评估了聚乳酸基生物塑料的降解

效率，RF模型表现最佳（R²=0.78） . 其他研究成功

地将 ANN、SVM等 ML模型与各种生物传感器相

结合用于预测 OSW堆肥中有机污染物的降解[67−68]，

有效拓展了生物传感器的浓度检测范围和检测准

确性. 

3    机器学习在有机固体废物领域的模型选择

根据处理工艺的选择，OSW的处理可以分为

物理、化学和生物处理，处理目标和技术要求都有

各自的特点，需要针对性地选择和应用适合的的

ML方法. 例如，在物理处理中，通常更关注废物的

分选与减量化，ML模型则多用于分类与优化物流

路径；在化学处理过程中，重点在于废物的化学转

化与稳定化，ML可帮助预测热化学处理的产物分

布与能量回收效率；生物处理则依赖微生物的代

谢活动降解有机物，ML可用于模拟微生物的行为

和优化发酵条件. 不同的 ML模型在这些领域中发

挥着独特作用，各自具有优势与局限. 通过对模型

进行全面比较，可以更清楚地理解其特性，从而帮

助研究人员根据 OSW处理需求，优化工艺流程、

提升资源化效率并做出更科学的决策.
各种 ML模型在 OSW资源化管理与处理领域

的应用频率统计结果如图 3所示. ANN是 OSW领

域中最常用的 ML模型，占应用总数的 40.89%，其

次是 SVM (16.44%) 和  RF/DT (19.52%). 其他模型

如多元线性回归（MLR）、K-最近邻（KNN）、极端

梯度提升 (XGBoost)、梯度推进回归树 (GBRT)等
占总模型的 23.15%. 此外，值得注意的是，统计得

到遗传算法（GA）作为一种优化算法，常与这些模

型结合以优化其超参数、结构和全局性能. 在所有

研究中的使用占比达 7.31%. GA尤其适用于复杂
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的多维优化问题，例如在 ANN中优化神经网络的

层数与权重[69]，在 SVM中选择最优的核函数参数[70]，

或者在集成学习中改进基本学习器的性能 [71]，从

而提升模型的预测能力与稳定性.
首先针对 ANN、SVM和 DT/RF这三类主要模

型，统计了其分别在 OSW的物理、化学、生物处理

领域的应用频率，并相应地绘制了频率热图（图 4）.
如图 4所示，在 OSW处理领域中，  ANN的使

用频率占据首位，表明 ANN可能是目前最流行的

ML模型. 然而，ANN模型在数据输入不足时容易

遇到过拟合问题，因此在样本量较少的情况下，

SVM算法的优势更为明显. 在化学与物理领域中，

DT/RF、SVM和 ANN等模型已有广泛应用 . 相较

于 ANN和 SVM，DT和 RF模型更容易解释和实

现，并且对缺失值具有较高的容忍度，这是一个显

著的优势，因为数据缺失在 OSW相关研究中非常

常见. 此外，DT和 RF在处理包含不相关特征的数

据集时表现更佳，但在处理强相关特征的数据集

时则表现平平. 目前，DT/RF在城市生活垃圾生成

预测、城市生活垃圾分类、热解性能估算等方面

都表现出了较强的能力，而在生化领域应用相对

较少，主要是因为它们在处理复杂非线性问题时

存在局限 . 相反，SVM和 ANN在生化过程建模中

表现出色. Nair等 [72] 提出了有关 ANN对厌氧消化

中甲烷产量的预测能力的担忧，因为模型仅达到

了 R2 为 0.73的预测精度 . 分析表明，这可能是因

为模型仅使用了化学或物理指标作为输入变量，

而未考虑生物指标 . 类似地，Alejo等 [50] 使用 SVM
和 ANN模型，以化学需氧量、进水总氨氮和总挥

发性固体量为输入数据，对消化出水总氨氮浓度

进行预测，但预测精度仅为 0.81和 0.77. 实际上，

由于相关参数难以明确，目前涉及复杂生化过程

的研究很少使用生物指示剂进行模型训练.
为了更好地分析不同机器学习模型在 OSW

处理领域的应用和发展趋势，本文引入了时间轴

分析. 从图 5可以看出，2018年的研究主要以DT/RF
和 SVM为主，反映了早期 OSW处理领域对传统

分类与回归模型的依赖 . 随着时间推移，XGBoost
和 ANN逐渐成为主流模型 . XGBoost的使用频率

在 2020年后大幅增长，表明集成学习在处理复杂非

线性问题和大数据集时的优势逐渐显现，而 ANN
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凭借其强大的特征表示能力，尤其在处理非结构

化数据时，使用频率在后期显著增加 . 相比之下，

SVM的使用频率逐年下降，表明其在应对复杂数

据时的局限性.
由此可见，数据集的规模对模型选择至关重

要. SVM适合于数据量较小的情况；当数据量适中

时，集成树模型（如 RF和 XGBoost）通常优于 ANN，

因为它们对数据缺失具有较高的容忍度 . 随着数

据量的增加，对模型能力的要求提高，过拟合风险

降低，ANN的优势逐渐显现，而集成学习的优势相

对减少 . 表 1对近年的常用模型的适用性进行了

总结和分析，为未来研究开发和模型选择提供了

有效参考，并强调了不断改进模型评估工作的必

要性.
总而言之，在 OSW处理领域，  ML的应用呈

现出不同时间段的研究趋势和方法选择的多样

性，且预测目标各异 . 研究者应首先基于数据的

结构和规模，结合具体的处理需求针对性地选择

适宜的 ML模型 . 例如，在数据量较小时，SVM模

型因其出色的高维数据处理能力常被采用；而在

大型非线性数据集上，ANN与集成学习模型（如

XGBoost、RF）表现尤为优异. 此外，输入变量的选

择也应基于问题所涉及的基本过程 . 对于复杂且

机理不明确的生化过程，输入变量的选择需要更

加谨慎，并且必须考虑微生物等内在作用. 模型建

立之后，  GA算法的引入可以有效改进模型的超

参数选择与优化过程，显著提升模型的预测精度

与稳定性，特别是在 OSW处理的动态复杂环境中. 

4    机器学习的潜在挑战与未来展望
 

4.1    潜在挑战

尽管 ML技术在 OSW处理领域展现出巨大潜

力，但其应用仍面临一些挑战，可能限制其进一步

发展.
(1) 数据需求量大：ML模型的训练和验证往

往依赖于大量数据. 在数据稀缺，尤其是高维数据

集的情况下，模型可能会陷入过拟合，仅“记住”而

非“学习”数据模式，导致训练效率降低.
(2) 问题复杂性：实际问题通常具有高度复杂

性，其形式化后的目标函数同样复杂 . 目前，尚未

存在普遍有效的算法来寻找这类复杂目标函数的

最优解，这要求我们探索新的优化技术.
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表 1    ANN、SVM、RF/DT、XGBoost的优点、局限性及相应的适用领域

Table 1    Advantages, limitations, and corresponding application fields of ANN、SVM、RF/DT、GA in OSW

ML model Advantages Limitations Suitable application fields

ANN

(1) Deep learning capability
(2) Adaptability to various data types
(3) Automatic feature extraction
(4) Efficient graphics processing unit (GPU)
training

(1) Requires large datasets
(2) Complex tuning and architecture
(3) Computationally intensive

(1) Predictive maintenance of waste-to-energy
plants
(2) Real-time waste monitoring
(3) Dynamic waste routing

SVM

(1) Effective in high-dimensional spaces
(2) Versatile, with various kernels
(3) Regularization controls overfitting
(4) Global optimization

(1) Memory intensive with large datasets
(2) Sensitive to parameter tuning
(3) Primarily for binary classification

(1) Landfill gas prediction
(2) Odor-control optimization
(3) Resource-recovery planning

DT
(1) Fast learning
(2) Minimal data preprocessing

(1) Prone to overfitting
(2) Limited nonlinear capabilities

(1) Composting optimization
(2) Waste generation and classification
(3) Landfill diversion strategies
(4) Pyrolysis performance estimation
(5) Bioprocess optimization

RF
(1) Robust ensemble method
(2) Addresses nonlinearity
(3) Less prone to overfitting than DT

(1) Slower training than DT
(2) Complexity in interpretation
(3) Not ideal for high dimensions

XGBoost

(1) High efficiency and fast training on large
datasets
(2) Addresses missing data well
(3) Regularization controls overfitting
(4) Scalable for high dimensions

(1) Computationally intensive
(2) Complex interpretation
(3) Requires careful parameter tuning

(1) Resource-recovery efficiency prediction
(2) Real-time process optimization
(3) Multivariable process optimization
(4) Pyrolysis and gasification modeling
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(3) 数据分布不均：在某些反应过程中，由于数

据点稀缺（如羟基自由基反应中反应速率过快或

过慢的情况），模型的预测精度可能受到影响 . 此
外，不同数据集的实验条件和侧重点差异，使得数

据整合成为一个难题.
(4) 模型可解释性：以 ANN为代表的某些模型

因其“黑箱”特性而受到批评 . 这些模型的内部机

制难以理解，变量的重要性难以评估，为模型的应

用带来了不确定性.
尽管存在上述挑战，ML在 OSW处理和管理

方面的应用潜力依然巨大，对环境保护和资源利

用具有重要价值. 

4.2    未来展望

面对现有挑战，可以考虑开展如下的策略：

(1) 集成模型的应用：目前大多数研究集中于

单一机器学习模型. 然而，集成学习模型，如XGBoost
和 RF，相比单一模型，通常具有更低的过拟合风

险、更精准的预测能力以及更强的稳健性. 这些集

成模型在处理大规模数据、非线性问题以及多变

量优化时表现出色，已成为解决复杂问题的重要

工具 . GA则作为一种优化工具，常用于优化其他

模型的参数设置，提升其性能[73].
(2) 跨学科技术融合：将机器学习与其他先进

技术结合，如将机器学习与可见近红外漫反射光

谱技术结合，可快速预估堆肥成熟度和酶活性 [74]；

结合物联网技术，可为提升废弃物管理智能化水

平提供创新解决方案.
(3) 数据不足问题的解决策略：除了数据提

取、实验设计、特征选择和数据增强等传统的筛

选和净化数据集的策略，强化学习（RL）和迁移学

习（TL）作为前沿的机器学习方法，提供了有效的

替代方案. TL通过将已有模型应用到新的数据集

上，减少了对大规模数据的依赖，例如将化学反应

模型应用于 OSW的热解或发酵过程优化 . 而
RL则通过不断试验和反馈机制，优化处理流程 .
特别是在 OSW处理的动态环境中，强化学习可以

有效提升处理效率并确保系统的稳定性.
(4) “黑箱”问题的深入研究：已有方法可以解

释输入变量对模型的贡献，部分实现“黑箱”内部

的可视化 [75]. 未来研究中应更频繁地应用这些解

释方法，并不断探索更简单、有效的新方法，以进

一步阐明“黑箱”问题. 

5    结论

本研究考察了机器学习（ML）技术在有机固体

废物（OSW）处理与资源化领域的应用现状与发展

趋势，分析了 ML在 OSW管理和处理中的多种应

用场景. 结果表明当前应用主要聚焦在 OSW的源

头管理方面，其次为热化学处理、厌氧生物处理、

好氧堆肥. 此外，发展趋势表明，ML方法可以为实

现废弃生物质高值化提供强有力的技术支持 . 本
研究进一步深入对比了人工神经网络（ANN）、支

持向量机（SVM）、决策树（DT） /随机森林（RF）和
极端梯度提升（XGBoost）等常用 ML模型在 OSW
处理中的应用频率、原理、适用性和局限性，同时

讨论了遗传算法（GA）作为一种优化算法在领域

中的应用情况 . ANN因其在处理大型非线性数据

集方面的卓越性能而得到广泛应用，而 GA则因其

解决复杂问题的优化能力常与 ML模型结合使用

以提高性能 . ML 在废物管理优化、资源利用提

升、污染风险降低等多个领域都有巨大的应用潜

力，不仅提高了 OSW处理的效率和准确性，还为

环境工程领域提供了新的视角和解决方案 . 同时，

本研究也指出了 ML应用的潜在限制，包括数据

质量、模型泛化能力及算法选择问题，并提出了相

应的解决策略.
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