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ABSTRACT Machine learning (ML) techniques, with their advanced data analysis and pattern recognition capabilities, are highly
effective for addressing the complexities of organic solid waste (OSW) treatment and resource recovery. As global waste generation
continues to increase, the need for efficient and sustainable OSW management solutions is growing. Traditional waste treatment
technologies often face challenges in managing the heterogeneous and complex nature of OSW, which varies widely in composition. In
contrast, ML can optimize treatment processes, improve resource recovery rates, and enhance decision-making. This study explores a
range of commonly used ML models, including artificial neural network (ANN), support vector machine (SVM), decision tree, random

forest, and extreme gradient boosting (XGBoost). These models have been used to predict waste characteristics, classify diverse types of

Y %5 B H8: 2024-07-10
EE&TH: BHEE S LRI %85 B (2022YFE0105700) 5 S8 /R 22 i BHE 31 %150 B (2D20232319) 5 F 5K H SRRl 22 55 4 AR Rl 3 4 ¢
BT H (72004067 ) 5 [ 52 T 5 9236 28 % 30 5 4 18 (22K 02ESPCT) ; i 4 /R B 34 X T KR4 19 (2022B02021)


mailto:feifan@ustb.edu.cn
mailto:feifan@ustb.edu.cn
https://doi.org/10.13374/j.issn2095-9389.2024.07.10.001
https://doi.org/10.13374/j.issn2095-9389.2024.07.10.001
https://doi.org/10.13374/j.issn2095-9389.2024.07.10.001
http://cje.ustb.edu.cn

T TS - LA ] e A AL AR R A SR A 1) L o - 551 -

OSW, and optimize treatment parameters across various processes, such as thermochemical conversion, anaerobic digestion, and aerobic
composting. A key focus of this work is the combination of ML models with optimization algorithms like Genetic Algorithm, which
improves the performance of ML models by optimizing hyperparameters and enhancing prediction accuracy. This approach is
particularly useful in complex processes such as biological treatment and resource recovery, where ML models can predict waste
characteristics and optimize treatment conditions. This work also presents a comprehensive analysis of the application frequency of these
ML models in various stages of OSW treatment, including source generation, classification, and treatment processes like pyrolysis,
gasification, and composting. This analysis identifies the strengths and weaknesses of each model, highlighting the importance of
selecting the most appropriate ML approach based on the specific characteristics of the OSW treatment task. ANN, for example, is
particularly useful for complex, nonlinear relationships within biological treatment processes, while SVM is effective for small datasets
and high-dimensional data. Despite the promise of ML in OSW management, there are key challenges that remain unresolved. These
include issues related to data quality, such as missing or incomplete datasets, and the generalization ability of ML models across different
treatment scenarios. Furthermore, selecting the right ML model for a specific task requires careful consideration of the data structure, the
complexity of the problem, and the desired outcomes. The full potential of ML in OSW treatment may not be realized without addressing
these challenges. This work proposes strategies for overcoming these challenges and improving the effectiveness of ML in OSW
treatment. One strategy involves developing integrated models that combine multiple ML techniques to leverage their respective
strengths. For example, the ensemble learning method, which integrates the outputs of multiple models, has been demonstrated to
improve prediction accuracy and robustness. Another strategy is the use of reinforcement learning and transfer learning, which
effectively address dynamic environments and small datasets, respectively. Finally, this work highlights the need for future research to
focus on the integration of ML models with real-time process monitoring and control systems. By linking ML with data-driven control
strategies, such as model predictive control, it may be possible to develop fully automated, intelligent OSW treatment systems that
optimize resource recovery and minimize environmental impact. The work concludes by recommending that researchers continue
exploring the combinations of ML with advanced control techniques to push the achievement boundaries in sustainable waste
management.

KEY WORDS organic solid waste; machine learning; resource utilization; efficient treatment; modeling and simulation; process
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Table 1 Advantages, limitations, and corresponding application fields of ANN, SVM, RF/DT. GA in OSW

ML model Advantages

Limitations

Suitable application fields

(1) Deep learning capability
(2) Adaptability to various data types
ANN (3) Automatic feature extraction
(4) Efficient graphics processing unit (GPU)
training

(1) Requires large datasets
(2) Complex tuning and architecture

(3) Computationally intensive

(1) Predictive maintenance of waste-to-energy
plants
(2) Real-time waste monitoring

(3) Dynamic waste routing

(1) Effective in high-dimensional spaces
(2) Versatile, with various kernels

(1) Memory intensive with large datasets

(1) Landfill gas prediction

SVM L . (2) Sensitive to parameter tuning (2) Odor-control optimization
(3) Regularization controls overfitting L . . . .
. (3) Primarily for binary classification (3) Resource-recovery planning
(4) Global optimization
DT (1) Fast learning (1) Prone to overfitting (1) Composting optimization

(2) Minimal data preprocessing

(2) Limited nonlinear capabilities

(2) Waste generation and classification

(1) Robust ensemble method
RF (2) Addresses nonlinearity
(3) Less prone to overfitting than DT

(1) Slower training than DT
(2) Complexity in interpretation
(3) Not ideal for high dimensions

(3) Landfill diversion strategies
(4) Pyrolysis performance estimation

(5) Bioprocess optimization

(1) High efficiency and fast training on large
datasets
XGBoost  (2) Addresses missing data well
(3) Regularization controls overfitting
(4) Scalable for high dimensions

(1) Computationally intensive
(2) Complex interpretation
(3) Requires careful parameter tuning

(1) Resource-recovery efficiency prediction
(2) Real-time process optimization

(3) Multivariable process optimization

(4) Pyrolysis and gasification modeling




- 558 -

TRERLF2ER, 26 47 5, 5 3

(3) Fdi o A AN eSS I N s R e, TR
s A R (n F2 3L 1y 56 B B TP R % e PR Bk
i I B0 ), AR Y A TR BE TT BB 7 B 52 .
A, AN [FE R 4 1 S 55 45 1 A B A5 25 5, (A5 4K
PR 1R — A M.

(4) BT AT BBk . DL ANN Ry 4% 35 1% it s i 751
PR PR R M T A2 B DT ok SR AL 1) PN SR AL
il LA A, AR B 00 EE L ME LATTEA, SRR B R
FHAR K T AN e

JUEEAE F R Pk, ML 78 OSW &b 3 F 45 33
J7 T 4 I FH 8 3 ABR R, X B AR 7 R 5 TR
A EEAME.

42 RRKREE

T VT B0 Bk K, T LA R T R AN 1) SR 0«

(1) BRI N B AT K Z 8 b
A Hlanep B SR, SRR SR, 4 XGBoost
A1 RF, HH Eb 5 — A, 5 5 2 AR 0 o 34 K
W6 . TR VR A T BE 7 LA R R R A R L xS
JRCARE TR A b PR R AR B4R | R Ltk () DA e £ A
LA SR B A, O R R i P 5 4% ) R Y 2L
T H. GAWER—F i ib T H, & H Tk Al
BRI S H &, ST MR,

(2) B A BHEOR Rl & L as 2 2 5 HoAth S i
ARG A, Wk pLEs 2% > 5 0] W 210 /M8 = 5k
T ARG A, TR T A S AT A A R U,
G55 PR W R, AT S B T 5 B e K
AR AL AR R &

(3) Bl AN J2 n) RO fige D SR M R T B 4
W, BRI T RRAE I B RS 1 0 A AR A Y
TE A AL M 2 1 SR W, 5 k2% 2] (RL) FIE RS 2
2 (TL)VE R i AL = > ik, $e 4t T A 20y
AR %, TL b A 180 0 H 25 i) B 42
b WD TR R AR (AR, 5 L A
B T OSW By A4 fig B3 A e ok #2 A Ak .
RL D38 3k AN W i 9 A0 S e LT, R A 2 3 722
FEnll 278 OSW Ab Y sh A M B b, s k2~ o] LA
R TH A BRACR I 10 8 2R 48 1 e

(4) “ PR ) B IR AW GY: B A 7k nT LLU#
T AR SO0 A AR 9 TR, S A S B RRAR T
B AT A AR 3L SR SR T 5 v I B A i 3 i
BT R, IR AR R T ] B0 A R BT 7 ik, DAk
— 2L W] AR ) .

5 #ig

ARWFFEHEEE T Hldesr > (ML) BORAEA HLIE AR

1) (OSW) 4b #1559 5 £ 451 358 7y 1o FH BRHR 5 % e
HEH, 1T ML 7E OSW 4 B A1 4b B v (1) 22 Foft
M5, a5 R RUY AT H EZRESE OSW [
S A 5T, RO A A B R A b B
L SECHERE. UL, & TR, ML k] LISl 52
R 57 A W o s (B A AR R AT T B SRR AR
IR — B RAST T AN T2 /4% (ANN) | 52
Fem EHL(SVM) | PSR (DT) /Bl L 2R AR (RF) F1
% ity 6 £ 42 T+ (XGBoost) 45 # F ML A5 Bl 7E OSW
Ab RPN AR | BRCEE L S M RN R R, ] e
W T s A% 58 (GA) AR R — i 0 A0 5507 78 4 B
rF A O . AN PR HG A A 38R 70 3 28 1 B 30
A6 77 I SRR PR BRI A5 2 )Yz N, T GA DU PR
fiff U 52 2 [ B ) AR AL BB ) 5 5 ML BRI 25 & ffi
DLEE PR . ML 758 9 48 L0040 . %8 U5 R 42
T 75 Yl AU [ AR A 22 AN AR AT B B L FH 7
F1, AALER T T OSW 4b 3 () 5 R Tl e 1, 38
R85 TR ATk AR 0L 1 3 A A A R ik e 5 TR
AWFFEAFE BT ML R 08 76 BRI, £ 35 5
iR BN AR ) B AR R IR, IR AR T A
V] P i LR SR e

& % X #

[1] Arun C, Sivashanmugam P. Study on optimization of process
parameters for enhancing the multi-hydrolytic enzyme activity in
garbage enzyme produced from preconsumer organic waste.
Bioresour Technol, 2017, 226: 200

[2]  Laurent A, Bakas I, Clavreul J, et al. Review of LCA studies of
solid waste management systems: Part I: Lessons learned and
perspectives. Waste Manag, 2014, 34(3): 573

[3] Kumar A, Samadder S R. Performance evaluation of anaerobic
digestion technology for energy recovery from organic fraction of
municipal solid waste: A review. Energy, 2020, 197: 117253

[4] Salman C A, Schwede S, Thorin E, et al. Predictive modelling and
simulation of integrated pyrolysis and anaerobic digestion process.
Energy Procedia, 2017, 105: 850

[5] Wang HX, XulJL, YuH X, et al. Study of the application and
methods for the comprehensive treatment of municipal solid waste
in Northeastern China. Renew Sustain Energy Rev, 2015, 52: 1881

[6] Nikku M, Deb A, Sermyagina E, et al. Reactivity characterization
of municipal solid waste and biomass. Fuel, 2019, 254: 115690

[7]  Patra A K, Lalhriatpuii M. Development of statistical models for
prediction of enteric methane emission from goats using nutrient
composition and intake variables. Agric Ecosyst Environ, 2016,
215:89

[8]  Andrade Cruz I, Chuenchart W, Long F, et al. Application of
machine learning in anaerobic digestion: Perspectives and

challenges. Bioresour Technol, 2022, 345: 126433


https://doi.org/10.1016/j.biortech.2016.12.029
https://doi.org/10.1016/j.wasman.2013.10.045
https://doi.org/10.1016/j.energy.2020.117253
https://doi.org/10.1016/j.egypro.2017.03.400
https://doi.org/10.1016/j.rser.2015.08.038
https://doi.org/10.1016/j.fuel.2019.115690
https://doi.org/10.1016/j.agee.2015.09.018
https://doi.org/10.1016/j.biortech.2021.126433

i

G A Lo > LA HIL I A 4 9 U 14 IO 3

- 559 -

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

Guo HN, Wu S B, Tian Y J, et al. Application of machine learning
methods for the prediction of organic solid waste treatment and
recycling processes: A review. Bioresour Technol, 2021, 319:
124114

Portugal I, Alencar P, Cowan D. The use of machine learning
algorithms in recommender systems: A systematic review. Expert
Syst Appl, 2018, 97: 205

Cipullo S, Snapir B, Prpich G, et al. Prediction of bioavailability
and toxicity of complex chemical mixtures through machine
learning models. Chemosphere, 2019, 215: 388

Chen C, Liang R, Song M Y, et al. Noise-assisted data
enhancement promoting image classification of municipal solid
waste. Resour Conserv Recycl, 2024, 209: 107790

Ahmad A, Yadav A K, Singh A, et al. A comprehensive machine
learning-coupled response surface methodology approach for
predictive modeling and optimization of biogas potential in
anaerobic co-digestion of organic waste. Biomass Bioenergy, 2024,
180: 106995

Wu Q L, Bao X, Guo W Q, et al. Medium chain carboxylic acids
production from waste biomass: Current advances and
perspectives. Biotechnol Adv, 2019, 37(5): 599

Long F, Fan J, Xu W C, et al. Predicting the performance of
medium-chain carboxylic acid (MCCA) production using machine
learning algorithms and microbial community data. J Clean Prod,
2022, 377: 134223

Agrawal P, R G, Dhawane S H. Prediction of biodiesel yield
employing machine learning: Interpretability analysis via shapley
additive explanations. Fuel, 2024, 359: 130516

Ma J J, Zhang S, Liu X J, et al. Machine learning prediction of
biochar yield based on biomass characteristics. Bioresour Technol,
2023, 389: 129820

Kulisz M, Kujawska J. Prediction of municipal waste generation in
Poland using neural network modeling. Sustainability, 2020,
12(23): 10088

Elshaboury N, Mohammed Abdelkader E, Al-Sakkaf A, et al.
Predictive analysis of municipal solid waste generation using an
optimized neural network model. Processes, 2021, 9(11): 2045
Soni U, Roy A, Verma A, et al. Forecasting municipal solid waste
generation using artificial intelligence models-a case study in
India. SN Appl Sci, 2019, 1(2): 162

Zheng Y, Bai J R, Xu J N, et al. A discrimination model in waste
plastics sorting using NIR hyperspectral imaging system. Waste
Manage, 2018, 72: 87

Serranti S, Gargiulo A, Bonifazi G. Classification of polyolefins
from building and construction waste using NIR hyperspectral
imaging system. Resour Conserv Recycl, 2012, 61: 52

Togagar M, Ergen B, Comert Z. Waste classification using
AutoEncoder network with integrated feature selection method in
convolutional neural network models. Measurement, 2020, 153:
107459

Tao J Y, Gu Y D, Hao X L, et al. Combination of hyperspectral

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

imaging and machine learning models for fast characterization and
classification of municipal solid waste. Resour Conserv Recycl,
023, 188: 106731

Bunsan S, Chen W Y, Chen H W, et al. Modeling the dioxin
emission of a municipal solid waste incinerator using neural
networks. Chemosphere, 2013, 92(3): 258

Norhayati I, Rashid M. Adaptive neuro-fuzzy prediction of carbon
monoxide emission from a clinical waste incineration plant. Neural
Comput Appl, 2018, 30(10): 3049

Tavoosi J, Mohammadzadeh A. A new recurrent radial basis
function network-based model predictive control for a power plant
boiler temperature control. Int J Eng, 2021, 34(3): 667

Alitasb G K, Salau A O. Multiple-input multiple-output Radial
Basis Function Neural Network modeling and model predictive
control of a biomass boiler. Energy Rep, 2024, 11: 442

Liu Z Y, Lu M, Zhang Y F, et al. Identification of heavy metal
leaching patterns in municipal solid waste incineration fly ash
based on an explainable machine learning approach. J Environ
Manag, 2022, 317: 115387

Guo L S, Xu X, Wang Q, et al. Machine learning-based prediction
of heavy metal immobilization rate in the solidification/stabili-
zation of municipal solid waste incineration fly ash (MSWIFA) by
geopolymers. J Hazard Mater, 2024, 467: 133682

LiJ S, Yao X W, Xu K L. A comprehensive model integrating BP
neural network and RSM for the prediction and optimization of
syngas quality. Biomass Bioenergy, 2021, 155: 106278

Zhao S H, Xu W J, Chen L H. The modeling and products
prediction for biomass oxidative pyrolysis based on PSO-ANN
method: An artificial intelligence algorithm approach. Fuel, 2022,
312: 122966

Leng L J, Zhang W J, Liu T G, et al. Machine learning predicting
wastewater properties of the aqueous phase derived from
hydrothermal treatment of biomass. Bioresour Technol, 2022, 358:
127348

Shu HY, Lu H C, Fan H J, et al. Prediction for energy content of
Taiwan municipal solid waste using multilayer perceptron neural
networks. J Air Waste Manag Assoc, 2006, 56(6): 852

Taki M, Rohani A. Machine learning models for prediction the
Higher Heating Value (HHV) of Municipal Solid Waste (MSW)
for waste-to-energy evaluation. Case Stud Therm Eng, 2022, 31:
101823

Leng L J, Li H, Yuan X Z, et al. Bio-oil upgrading by
emulsification/microemulsification: A review. Energy, 2018, 161:
214

Aghbashlo M, Peng W X, Tabatabaei M, et al. Machine learning
technology in biodiesel research: A review. Prog Energy Combust
Sci, 2021, 85: 100904

Tang Q H, Chen Y Q, Yang H P, et al. Prediction of bio-oil yield
and hydrogen contents based on machine learning method: Effect
of biomass compositions and pyrolysis conditions. Energy Fuels,

2020, 34(9): 11050


https://doi.org/10.1016/j.biortech.2020.124114
https://doi.org/10.1016/j.eswa.2017.12.020
https://doi.org/10.1016/j.eswa.2017.12.020
https://doi.org/10.1016/j.chemosphere.2018.10.056
https://doi.org/10.1016/j.resconrec.2024.107790
https://doi.org/10.1016/j.biombioe.2023.106995
https://doi.org/10.1016/j.biotechadv.2019.03.003
https://doi.org/10.1016/j.jclepro.2022.134223
https://doi.org/10.1016/j.fuel.2023.130516
https://doi.org/10.1016/j.biortech.2023.129820
https://doi.org/10.3390/su122310088
https://doi.org/10.3390/pr9112045
https://doi.org/10.1007/s42452-018-0157-x
https://doi.org/10.1016/j.wasman.2017.10.015
https://doi.org/10.1016/j.wasman.2017.10.015
https://doi.org/10.1016/j.resconrec.2012.01.007
https://doi.org/10.1016/j.measurement.2019.107459
https://doi.org/10.1016/j.chemosphere.2013.01.083
https://doi.org/10.1007/s00521-017-2921-z
https://doi.org/10.1007/s00521-017-2921-z
https://doi.org/10.1016/j.egyr.2023.11.063
https://doi.org/10.1016/j.jenvman.2022.115387
https://doi.org/10.1016/j.jenvman.2022.115387
https://doi.org/10.1016/j.jhazmat.2024.133682
https://doi.org/10.1016/j.biombioe.2021.106278
https://doi.org/10.1016/j.fuel.2021.122966
https://doi.org/10.1016/j.biortech.2022.127348
https://doi.org/10.1016/j.csite.2022.101823
https://doi.org/10.1016/j.energy.2018.07.117
https://doi.org/10.1016/j.pecs.2021.100904
https://doi.org/10.1016/j.pecs.2021.100904
https://doi.org/10.1021/acs.energyfuels.0c01893

- 560 -

TRERLF2ER, 26 47 5, 5 3

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Ma Z Y, Wang H N, Li Y L, et al. Optimized bio-oil
emulsification for sustainable asphalt production: A step towards a
low-carbon pavement. Constr Build Mater, 2024, 419: 135218

Liu Y, Sayed B T, Sivaraman R, et al. Novel and robust machine
learning model to optimize biodiesel production from algal oil
using CaO and CaO/Al,O; as catalyst: Sustainable green energy.
Environ Technol Innov, 2023, 30: 103018

Zhu X Z, Li Y N, Wang X N. Machine learning prediction of
biochar yield and carbon contents in biochar based on biomass
characteristics and pyrolysis conditions. Bioresour Technol, 2019,
288: 121527.

Greses S, Tomas-Pejo E, Gonzalez-Fernandez C. Short-chain fatty
acids and hydrogen production in one single anaerobic
fermentation stage using carbohydrate-rich food waste. J Clean
Prod, 2021, 284: 124727

Dong W J, Yang Y L, Liu C, et al. Caproic acid production from
anaerobic fermentation of organic waste - Pathways and microbial
perspective. Renew Sustain Energy Rev, 2023, 175: 113181
Perez-Esteban N, Vinardell S, Vidal-Antich C, et al. Potential of
anaerobic co-fermentation in wastewater treatments plants: A
review. Sci Total Environ, 2022, 813: 152498

Iglesias-Iglesias R, Kennes C, Veiga M C. Valorization of sewage
sludge in co-digestion with cheese whey to produce volatile fatty
acids. Waste Manage, 2020, 118: 541

Barik D, Murugan S. An artificial neural network and genetic
algorithm optimized model for biogas production from co-
digestion of seed cake of karanja and cattle dung. Waste Biomass
Valorization, 2015, 6(6): 1015

Abu Qdais H, Bani Hani K, Shatnawi N. Modeling and
optimization of biogas production from a waste digester using
artificial neural network and genetic algorithm. Resour Conserv
Recycl, 2010, 54(6): 359

Wang X M, Bai X, Li Z F, et al. Evaluation of artificial neural
network models for online monitoring of alkalinity in anaerobic
co-digestion system. Biochem! Eng J, 2018, 140: 85

Li H, Ke L T, Chen Z, et al. Estimating the fates of C and N in
various anaerobic codigestions of manure and lignocellulosic
biomass based on artificial neural networks. Energy Fuels, 2016,
30(11): 9490

Alejo L, Atkinson J, Guzman-Fierro V, et al. Effluent composition
prediction of a two-stage anaerobic digestion process: Machine
learning and stoichiometry techniques. Environ Sci Pollut Res Int,
2018,25(21): 21149

Kazemi P, Bengoa C, Steyer J P, et al. Data-driven techniques for
fault detection in anaerobic digestion process. Process Saf Environ
Protect, 2021, 146: 905

Xu W C, Long F, Zhao H, et al. Performance prediction of ZVI-
based anaerobic digestion reactor using machine
algorithms. Waste Manage, 2021, 121: 59

Vendruscolo E C G, Mesa D, Rissi D V, et al. Microbial

learning

communities network analysis of anaerobic reactors fed with

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

bovine and swine slurry. Sci Total Environ, 2020, 742: 140314
Coelho M M H, Morais N W S, Pereira E L, et al. Potential
assessment and kinetic modeling of carboxylic acids production
using dairy wastewater as substrate. Biochem Eng J, 2020, 156:
107502

Candry P, Radi¢ L, Favere J, et al. Mildly acidic pH selects for
chain elongation to caproic acid over alternative pathways during
lactic acid fermentation. Water Res, 2020, 186: 116396

Long F, Fan J, Liu H. Prediction and optimization of medium-
chain carboxylic acids production from food waste using machine
learning models. Bioresour Technol, 2023, 370: 128533

Guo X X, Liu H T, Wu S B. Humic substances developed during
organic waste composting: Formation mechanisms, structural
properties, and agronomic functions. Sci Total Environ, 2019, 662:
501

Déportes I, Benoit-Guyod J L, Zmirou D. Hazard to man and the
environment posed by the use of urban waste compost: A review.
Sci Total Environ, 1995, 172(2-3): 197

Sharma D, Pandey A K, Yadav K D, et al. Response surface
methodology and artificial neural network modelling for enhancing
maturity parameters during vermicomposting of floral waste.
Bioresour Technol, 2021, 324: 124672

Muthuveni M, Deebika S, Boopathy T, et al. I-optimal mixture
design and artificial neural network for the sustainable production
of vermicompost. Biomass Convers Biorefin, 2024, 14(9): 10147
Xue W, Hu X J, Wei Z, et al. A fast and easy method for
predicting agricultural waste compost maturity by image-based
deep learning. Bioresour Technol, 2019, 290: 121761

Kujawa S, Mazurkiewicz J, Czekalta W. Using convolutional
neural networks to classify the maturity of compost based on
sewage sludge and rapeseed straw. J Clean Prod, 2020, 258:
120814

Soto-Paz J, Alfonso-Morales W, Caicedo-Bravo E, et al. A new
approach for the optimization of biowaste composting using
artificial neural networks and particle swarm optimization. Waste
Biomass Valorization, 2020, 11(8): 3937

Baymndir Y, Cagcag Yolcu O, Aydin Temel F, et al. Evaluation of
a cascade artificial neural network for modeling and optimization
of process parameters in co-composting of cattle manure and
municipal solid waste. J Environ Manag, 2022, 318: 115496

Alavi N, Sarmadi K, Goudarzi G, et al. Attenuation of
tetracyclines during chicken manure and bagasse co-composting:
Degradation, kinetics, and artificial neural network modeling. J
Environ Manag, 2019, 231: 1203

Yamawaki R, Tei A, Ito K, et al. Decomposition factor analysis
based on virtual experiments throughout Bayesian optimization for
compost-degradable polymers. Appl Sci, 2021, 11(6): 2820

Kim S, Lee M H, Wiwasuku T, et al. Human sensor-inspired
supervised machine learning of smartphone-based paper
microfluidic analysis for bacterial species classification. Biosens

Bioelectron, 2021, 188: 113335


https://doi.org/10.1016/j.conbuildmat.2024.135218
https://doi.org/10.1016/j.eti.2023.103018
https://doi.org/10.1016/j.biortech.2019.121527
https://doi.org/10.1016/j.jclepro.2020.124727
https://doi.org/10.1016/j.jclepro.2020.124727
https://doi.org/10.1016/j.rser.2023.113181
https://doi.org/10.1016/j.scitotenv.2021.152498
https://doi.org/10.1016/j.wasman.2020.09.002
https://doi.org/10.1007/s12649-015-9392-1
https://doi.org/10.1007/s12649-015-9392-1
https://doi.org/10.1016/j.resconrec.2009.08.012
https://doi.org/10.1016/j.resconrec.2009.08.012
https://doi.org/10.1016/j.bej.2018.09.010
https://doi.org/10.1021/acs.energyfuels.6b01883
https://doi.org/10.1007/s11356-018-2224-7
https://doi.org/10.1016/j.psep.2020.12.016
https://doi.org/10.1016/j.psep.2020.12.016
https://doi.org/10.1016/j.wasman.2020.12.003
https://doi.org/10.1016/j.scitotenv.2020.140314
https://doi.org/10.1016/j.bej.2020.107502
https://doi.org/10.1016/j.watres.2020.116396
https://doi.org/10.1016/j.biortech.2022.128533
https://doi.org/10.1016/j.scitotenv.2019.01.137
https://doi.org/10.1016/0048-9697(95)04808-1
https://doi.org/10.1016/j.biortech.2021.124672
https://doi.org/10.1007/s13399-022-02962-8
https://doi.org/10.1016/j.biortech.2019.121761
https://doi.org/10.1016/j.jclepro.2020.120814
https://doi.org/10.1007/s12649-019-00716-8
https://doi.org/10.1007/s12649-019-00716-8
https://doi.org/10.1016/j.jenvman.2022.115496
https://doi.org/10.1016/j.jenvman.2018.11.003
https://doi.org/10.1016/j.jenvman.2018.11.003
https://doi.org/10.3390/app11062820
https://doi.org/10.1016/j.bios.2021.113335
https://doi.org/10.1016/j.bios.2021.113335

i

G A Lo > LA HIL I A 4 9 U 14 IO 3

- 561 -

[68]

[69]

[70]

[71]

Galan E A, Zhao H R, Wang X K, et al. Intelligent microfluidics:
The convergence of machine learning and microfluidics in
materials science and biomedicine. Matter, 2020, 3(6): 1893

Li R, Xu A K, Zhao Y, et al. Genetic algorithm (GA) - Artificial
neural network (ANN) modeling for the emission rates of toxic
volatile organic compounds (VOCs) emitted from landfill
working surface. J Environ Manag, 2022, 305: 114433
Ramachandran S, Jayalal M L, Vasudevan M, et al. Combining
machine learning techniques and genetic algorithm for predicting
run times of high performance computing jobs. App! Soft Comput,
2024, 165: 112053

Wang Z N, Wu F X, Hao N, et al. The combined machine learning
model SMOTER-GA-RF for methane yield prediction during

anaerobic digestion of straw lignocellulose based on random forest

[72]

[73]

[74]

[75]

regression. J Clean Prod, 2024, 466: 142909

Nair V V, Dhar H, Kumar S, et al. Artificial neural network based
modeling to evaluate methane yield from biogas in a laboratory-
scale anaerobic bioreactor. Bioresour Technol, 2016, 217: 90
Beltramo T, Hitzmann B. Evaluation of the linear and non-linear
prediction models optimized with metaheuristics: Application to
anaerobic digestion processes. Eng Agric Environ Food, 2019,
12(4): 397

Chakraborty S, Das B S, Nasim Ali M, et al. Rapid estimation of
compost enzymatic activity by spectral analysis method combined
with machine learning. Waste Manage, 2014, 34(3): 623

Olden J D, Jackson D A. Illuminating the “ black box” : A
randomization approach for understanding variable contributions

in artificial neural networks. Ecol Model, 2002, 154(1-2): 135


https://doi.org/10.1016/j.matt.2020.08.034
https://doi.org/10.1016/j.jenvman.2022.114433
https://doi.org/10.1016/j.asoc.2024.112053
https://doi.org/10.1016/j.jclepro.2024.142909
https://doi.org/10.1016/j.biortech.2016.03.046
https://doi.org/10.1016/j.wasman.2013.12.010
https://doi.org/10.1016/S0304-3800(02)00064-9

	1 机器学习在有机固体废物领域的模型构建
	2 机器学习在有机固体废物领域的应用现状
	2.1 产生与分类
	2.2 热化学处理
	2.3 厌氧生物处理
	2.4 好氧堆肥

	3 机器学习在有机固体废物领域的模型选择
	4 机器学习的潜在挑战与未来展望
	4.1 潜在挑战
	4.2 未来展望

	5 结论
	参考文献

