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Progress in phase field research of dead lithium in lithium batteries

LIU Jing, CHEN Huiyi, LIU Huiyu, LI Shu™
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ABSTRACT In recent years, the increase in people’s demand for energy has led to the development of secondary batteries. Because of
its high theoretical capacity and low electrochemical potential, lithium metal has gradually become the preferred negative electrode
material for high-energy-density secondary batteries and has great application prospects in the field of energy storage technology.
However, the practical application of lithium metal anodes faces major challenges mainly because of the inevitable formation of lithium
dendrites and dead lithium during the charge—discharge cycle. These problems considerably reduce the Coulomb efficiency and service
life of lithium metal batteries and constitute a substantial obstacle to the development and wide application of lithium metal batteries.
Lithium dendrites are tree-like structures formed by uneven lithium deposition during the charging of lithium metal. These dendrites can
penetrate the diaphragm and reach the cathode, causing a short circuit that can lead to catastrophic battery failure. Dead lithium refers to
lithium that is separated from the anode during the discharging of a lithium battery and no longer participates in subsequent
electrochemical reactions. The accumulation of dead lithium reduces the inventory of active lithium, causing battery capacity and
efficiency to decline over time. Addressing these challenges requires an in-depth understanding of the formation mechanisms of lithium
dendrites and dead lithium and their influencing factors. This study focuses on analyzing these mechanisms and influencing factors from
the perspective of the phase field, which is a powerful computational method to simulate microstructure evolution, providing insights
into the complex dynamics of lithium deposition and the conditions and influencing factors for the formation of lithium dendrites and
dead Lithium. The latest research progress on the inhibition of dead lithium by temperature, pressure, diaphragm, bubble, and high active
electrolyte was reviewed. First, the influence of temperature and pressure on the formation of dead lithium and the effect of two coupling

fields on dead lithium are discussed. Second, starting from the diaphragm and electrolyte, the results of researchers in recent years are
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reviewed. For example, selecting a diaphragm with the appropriate pore size can promote the uniform deposition of lithium, better

prevent the penetration of dendrites, and promote the resurrection of dead lithium. The highly active electrolyte can enhance the smooth

deposition of lithium and inhibit the formation of dead lithium. These factors can regulate the deposition form of lithium to a certain

extent and slow down or avoid the formation of lithium dendrites and dead lithium. By optimizing these factors, researchers can better

control the deposition morphology of lithium, alleviating or even avoiding the formation of lithium dendrites and dead lithium. The

phase field method is used to determine how the formation of dead lithium affects the overall life of the battery. The phase field is also

used to simulate the long-term behavior of lithium metal anodes to predict the battery life under various operating conditions. Finally,

this paper discusses and summarizes the shortcomings of the existing phase field method in the study of the radical elimination of dead

lithium and the prospects for future development.

KEY WORDS phase field method; lithium battery; dendrite; dead lithium; inhibition strategy
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Fig.1 Formation of dead lithium during lithium stripping
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Fig.2  Phase field simulation of lithium dendrite morphology evolution during constant current deposition (a—c) and constant current stripping

(d—f) processes; (g—i) evolution of electrostatic potential during the stripping process; (j—1) surface activation overpotential evolution of active lithium

during the stripping process”*
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Fig.3 Phase field simulation of the Li and morphology of Li deposition quantitative analysis of inactive Li at different temperatures: (a) phase field

simulation of the deposition process'*®; (b) phase field simulation of the stripping process'*”; scanning electron microscopy images of deposited Li after
first deposition at (c) 0 °C, (d) 25 °C, and (e) 50 °C"); distribution of inactive Li in batteries at (f) 0 °C, (g) 25 °C, and (h) 50 °C (cycling at 0.5 mA-cm >
between 2.8 V and 3.8 V) (Capacity loss normalized by the first charge capacity for dead lithium metal, SEI, and LiH consumption)”)
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