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ABSTRACT Yellow phosphorus is an important industrial raw material used in pharmaceuticals, food, pesticides, the military, and the
chemical industry, significantly impacting the economy. The drying effect is the most important aspect that affects the material
properties. Traditional drying methods are often inefficient and energy-intensive, while microwave drying offers unique heating
advantages, making it a promising alternative. This paper explores how initial mass, moisture content, and microwave power influence
the drying process using microwave technology. The study examined how varying initial mass, moisture content, and microwave power

affect the drying characteristics of materials. It calculated the microwave drying efficiency (#) and unit energy consumption (Q) under
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different conditions. Results indicated that increasing the initial mass and moisture content enhances the microwave’s drying efficiency
and reduces the unit energy consumption. However, as microwave power increased, the microwave drying efficiency gradually
decreased, while the unit energy consumption gradually increased. When the initial mass increased from 20 g to 50 g, drying efficiency
rose from 6.58% to 13.12%, while unit energy consumption decreased from 34.33 to 17.20 MJ-kg"'. Similarly, increasing initial moisture
content increased from 20% to 40% improved efficiency from 12.36% to 19.15%, unit energy consumption decreased from 14.28 to
11.70 MJ-kg . The results showed that the maximum microwave drying efficiency (i7) reached 21.51% and the minimum unit energy
consumption (Q,) was 10.99 MJ-kg ' at a mass of 50 g, a moisture content of 40%, and a microwave power of 360 W. Furthermore, this
efficiency and energy consumption were consistent when the initial moisture content ranged from 20% to 40%. Four thin-layer drying
kinetic models were used to fit the relevant experimental data, revealing that the Modified Page model was the most suitable for
describing the microwave drying process of the material. Surface diffusion coefficients of water molecules were calculated under
different conditions, and activation energy was derived from these coefficients. The maximum diffusion coefficient was 1.29 x
107" m?-s" for an initial mass of 40 g, 1.53 x 10'® m*'s™' for an initial moisture content of 30%, and 1.64 x 10™'® m*:s™' for a microwave
power of 900 W. The activation energy was calculated to be 5.95 W-g™'. Using COMSOL, simulations of the electromagnetic and
temperature fields under varying microwave power conditions were conducted. The electric field intensity increased with higher
microwave power, rising from 8.13 x 10* V'-m™" at 360 W to 1.15 x 10° V-m " at 720 W. In the experimental phase, increased microwave
power reduces the time required for drying, and the temperature field distribution aligns with experimental results, effectively describing
the drying process under microwave influence. This provides a theoretical basis and technical support for the efficient drying of yellow
phosphorus-like materials.

KEY WORDS yellow phosphorus-like materials; microwave drying; kinetic modelling; effective moisture diffusion coefficient;

activation energy; COMSOL model
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Table 3 Initial simulation parameters

Parameter Value or expression
Microwave width/m 0.32
Microwave depth/m 0.3
Microwave height/m 0.2
Waveguide width/m 0.05
Waveguide depth/m 0.068
Waveguide height/m 0.022
Glass disc radius/m 0.125
Glass tray height/m 0.006

Distance between the glass disc and the bottom/m 0.015
Material radius/m 0.045
Material height/m 0.015
Initial temperature/°C 25
Microwave frequency/GHz 245

Thermal conductivity/(W-m'-K™") k_solid_1(T)

Constant pressure heat capacity/(J-g”-K™") C_solid_1(T)

Densities/(kg'm ) tho_solid 1(T)

Relative permittivity 3.2

Relative permeability 1

Conductivity/(S'm™) 0.002
&e=go& = go(el —ig)) (6)

o gg by B 25 A LR BL (8.85%107%), F'rm™'; e, A
FHXTE A HLH L, = —1; el B A HLUH B S,
PR MR AL, F B WA B AL BE T &) B
I HLE B R, RO BRI . B s MORHFE L
T BB L 9 RE T . 33X S S 50 235 i Rk X A
AR LM, AT 552 Ml B e %%

A R FE IE D)2 A AR R R L
I, FkAwr,

’’

tand = g—r, 7D

Horp, tans A A ARFE 9 IE VA — R U, 1E VI
FE AR A, R Ui/ W AT S AR A, > O FE bk rh A%
T, 3 o/ B ORI £ T Ak R B

U Ah, 0 2 35 TR R 3R s M ORE T B BE Y
AR T, SR U T R R e & 3R AT (E
153 Ve(Bl) 36.8%) B} XF R 14 44 1R B, e S RR hir %K
(2.7182818...).

I H, 28 3 R 5 O R A S 5 B
FHOG. — Mk U, WAk W I8 RE 7 B8 55 2 375 TR i
Wk B REITTE AR T,

illy

C

2\/§fnJa; 1+(8—;,’)2—1

gr
Horb: D, A FBEIRE, m; oo HOLTEEZ T
TR H L, mes™s N TR 2, Hz.

&3 5 7R AN T[] 5 7K 38 1 8 A 0 R
2.45 GHz TR L. BURER 7 | BAEIE I A 2E
75 TRV B R (0 A8 Ak il 28 W Rk A o M RE 2
Z A KRR, FEMIEER T, B iK1
e F 1) B AL 5 2O B AR Ak, TR 40 4 A K
X W AR Y S R S L R KRR R R R NMS £ )
LA HLE BORRRE N T BE TR 1 AR R R T
Ji WA AT P e . L Ry ek vl 7 R W R B D R
Pk aT DLW SRR 22 (9 T80 e, A FLE B0 A T
. Rk R K G B R R T s 2Rk, HA R
4 A H B SO RE R A T 7K 89 1 H o BRI A AR
K, W H ORI AR R A T B35, H1A 3(a)
AL, B BEYRL A B B el 3.2 5 YA
B Be, =317 MIHEID) . B HEIEAE —CREZ
Jo Fhie, B R YR K bR R kL
W A Bl 0 e ) RE T AR 55
22 AEESXTEREE T IR NE

R T WG RIUR B A WIAR B KR B T R
XoF S HE W R R 5, 3 A S B T R T
T TP B T e | R TR KGR DL B BB FE. AE
T TR FE R, 150 s 2 BT SR A i K Y e
B, Sk KA R, 150 s 25 TRk N A 7e
ME DL BR 10 B 4K FES A K, BEI oK AL
I IEAN, HE B K E R 30% ., % TR 540 W, #]
R 0T N 6] B 45 1R, PRk g 6 B A T o
(1) 38 T 2 N, BN 20 g Y R R
27.51% min"" (| 4(a)). FEVI 15 BTl 20 g, Fo i 2
N 540 W IR &K BRI AT, T ER
B 25 7K R B 1G M R, & 7K F5h 40% 1Y 45 3
RN 26.34% min ' (F] 4(b)). 3= 2 5 R A [H) R
PRk A A R K R B i, K 43 T DA R
EANLR A5 NSNS ey g7 L7/ S
UL T F A 900 WA, Tk Rk B B kK, A
27.34% min"" (& 4(c)). T8 hn 4] DL S 34 L 1Y)
P T4, HBE A T D AR 3G N, B AR [
U/ B Y g ) ROl 360 W T T R ] N
330's, M TR 900 W I FIF a5 -1 1A] 2 240 s,
Ui B R T Tt i £ il 2 Fpe Ty 38 A 15 o A8 22
S 3 i DR B ) R K, Wk T DA i 2




TRERLF2E, 26 47 5, 5 5

1072 -
@) —o— 20%
40 d —a— 30%
“ —a— 40%
E 3}
w
=
3
Q
=
3
°
2 ot
0 1 1 1 1 1 1
0 50 100 150 200 250 300
Temperature/C
0.07 1 (© —— 20%
0.06 | —o—30%
—a— 40%
g 0.05
£ 0.04f
(9]
2
g 003}
g 002}
0.01
0 L

0 50 100 150 200 250 300

Temperature/C

tw._
g
.2
=}
3
2
[a)
0 50 100 150 200 250 300
Temperature/C
(i) 14 —— 20% |—9— 20%
8r S 121 :30% —a— 30%
E | Zor e 409
= T 08
- 6F T 061
*5; 2 04f
3 £ 02t
g 4r5 of
= -02F , . .
=] 50 100 150 200
2 2t Temperature/ C
[
& f
ol -

0 50 100 150 200 250 300
Temperature/C

B3 RREGKSEIE (BIEIRZEH 2.45 GHz) ZHETR BRI, () MEF ] (b) BHREE T &’; (o) MFEM IEY) tand; (d) I SEBRE D,

Fig.3 Variation curves of parameters with temperature for materials with different water content (microwave frequency of 2.45 GHz): (a) dielectric

constant &;; (b) dielectric loss &;’; (c) loss tangent tand; (d) penetration depth D,

Y R BB, W WA I H R BB T AR AL R FAEE, ik
PAECY

38 o8 R T R ORI LS RE FE R P W) 4R
T PR P K RO T R R T g RE
BRI 52 M U2 B0 IR B8R () 2 B K Sy
AL K ZER N RE R M IR e R 2 L, 3T
(=R/NE W (1 N

7= ’"VIV:W x 100% )

o my R IR I T, kg A K AT
(2257 kIkg™"); PO BB TR, W ¢ 8 B T A
A 1], s.

BT RERE (Qy) S BN I R 2% & 7K 43 1Y RE
¥, BN MIkg . B A TR R,

(100

HRAE S (9) A= (10) THAR ik 1 9 850 % Fn B
17 BEFE, 45 B 40 & 4(d), (e) A1 () FIr s . & 4(d) Fi
() F P, Bt 25 40 0 Jo 2 RAT) 4R 25 /K SR A B4, 84k
T IR B 22 38 K, AR ) B REAE & BRAIK.
[l 4 () AT %0, Bl & W D 22 A 38, T4 B fR) AR
S, TR R A5 2 AT, T L 1 {57 B FE B

TR Ty 23R ) 1 R B K. 32 D PR O B D T R
38 K BOK 43 28 & 3G K AN EL 4(d), (e) F (D)
AL, YA bR TR 50 g, W1 IR S K RN 40%, 1
Pk 360 W, i T4 03 i Kol 21.51%,
B REFERLAR R 10.99 MT kg

BB RAEIRE R 60 C RN 220V,
R M 50 Hz, RN 2050 WA 5 XU T 4 48 LA %
TR 100 °C ., LR R 220 V., #5135k 50/60 Hz, 3
Rk 2500 W) Ey 3 A rf il = 4 E AR O T R S
G, S0 P XA (. AR R R A T FE e 1]
A4 45 min F1 36.5 min, 1L TR AE 360 W I Jir
B} 8] 24 5.5 min, 7E 900 W i Bt FH B [6] 24 4 min.
Y28 4 AT, 8 BT MR 0 TR ROR G AN Bk T
fi, BRL BEFE I K T T IR R TR AR
FTRE AL, FE Tl b A R AT A4 S R s 1]
23 FAFEBNHEFEUES S

il Page . Modified page. Simplified Fick’s diffu-
sion 1 Wang and Singh U F 8 J22 5t 8l ) A5 7Y
PRI W B0 T 4 A R B g 2R R SR W R
WIhR TN 50 g, IR 5 K R 30%, Bl U3 A
900 W 1) AH 5 S 16 B4 AT 005 5 43 0, 0 E B
FESh R 38 5. %60 £ 7P LA B



i % T 45 SRR 08 3 1 2 e

-1073 -

30 {@

251

20 -

L —— 20
—— 30
5| —o— 40
—a— 50

Moisture content/%
"

0 r Initial mass/g

I
2ol 18.43
I

Maximum dehydration rate/(%-min ")
7

20 30 40 50
Initial mass/g

0 50

100 150 200 250 300

Microwave drying time/s

(©

Moisture content/%
[ ]
S

Microwave power/W

w
S
T

27.34

T
||
900

I 23.53

I
|‘
360

N
S

23.17 23.18
I I,
| L ‘ | L ‘
540 720
Microwave power/W

<}
S

>

Maximum dehydration rate/(%-min™")
% o

=)

0 50

100 150 200 250 300 350
Microwave drying time/s

Microwave drying efficiency/%

20

&l 4
TR REAE R

13.50 19.15
I

11.70 |

30

Initial moisture content/%

40

Unit energy consumption/(MJ-kg™")

125

120

115

110

40 _(b) ;%30' 2634
& 30+ £
= £
g 2l £
g R, 30 0
N 8 Initial moisture content/%
= 101 _5 2
—o— 30
ol 40
Ini.tial mois.ture cont;nt/% ) ) )
0 50 100 150 200 250
Microwave drying time/s
141 @ 545 13.12
o I
=
g Ll 11.89
Q
5 o 9.80
Q
£ La73.05
2 g ¥
= 6.58 18.98
S 6l i = 17.20
g x
g 4f
S
s Ll
20 30 40 50
Initial mass/g
250 19.99
. 21.51 I
g I
E 20k 16.35
= 17.94 I
;g . 12.58
= .
= BTE 099 T
R I 11.80
>
£ I
g 10
3
8
L2 5t
=

120

115

110

360

540 720
Microwave power/W

900

Unit energy consumption/(MJ-kg™")

Unit energy consumption/(MJ-kg™")

RV () IR 7K (0) BB (o) A0 T SRR ] il 2e; R ERIIA BT (d). HIIAE7K A (o) B T4 (f) ZAFir
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Table 4 Comparison of microwave drying and conventional drying parameters
Drying methods Power/W Time/s Drying efficiency/% Unit energy consumption/(MJkg ")
360 330 21.51 10.99
540 270 17.94 12.58
Microwave drying
720 270 13.82 16.35
900 240 11.80 19.99
Hot air drying 2050 2700 9.30x 1077 2401.32
High-temperature furnace 2500 2190 9.24 x 1077 2370.13

#5 AFEBEIZERIG
P B E 25

Table 5 Fitting results of different models at 50 g material weight, 30%

A 50 g, fKFR N 30%, TIFRK 540 W 4%

initial moisture content, 540 W microwave power

Model R RSS F-value
Page 0.99837 0.00167  2990.10032
Modified Page 0.99837 0.00167 2990.27238
Simplified Fick’s diffusion 0.97532  0.02536  110.93019
Wang and Singh 0.93578 0.06599  772.45486

6 AFEERILERILG KRN 30%,
HEF RS 251

Table 6 Fitting results of different models at 30% initial moisture

JEHEH 20 g, T 540 W 4%

content, 20 g material weight, 540 W microwave power

Model R RSS F-value
Page 0.99197  0.00917 666.52219
Modified Page 0.992 0.00915 668.25558
Simplified Fick’s diffusion 0.955671 0.044947  68.98683
Wang and Singh 0.98353  0.011882 3322.96016

£7 FREBHEMBEIIRN 900 W, FKFRN 40%, Fik R 50 g 4
T RS 2R
Table 7 Fitting results of different models at a 900 W microwave

power, 40% initial moisture content, 50 g material weight

Model R RSS F-value
Page 0.99163 0.00911  625.83417
Modified Page 0.99165 0.00909  627.47262
Simplified Fick’s diffusion 0.96754  0.03535 990.7175
Wang and Singh 0.9836 0.01787  3317.52598

I W YR T AR R B MERA P, K TR R
HK 4 e MR 1 5255 35 { 5 Modified page F5
BIPLA VAT X EE, Qi &l 7 Fros. AT LAE H MR )
SIS 5 Modified page #5800 Al A 7E — 4%

R 1ML L. L, FEAFRWIGE R WIih
KRG B 255 T, Modified Page 52 AU ]

DAAR B 1) i B 00 T 25 B A ) ) R
24 FEERHBAELENITE
25 R T A AR e R A O
A A K S5 T AR A X In(MR) 5 ¢ 34T 2
PUA, 15 205G OB 0 P 1R B A R R
FW Ln(MR) 5 ¢ A7 RIFRIZLME R, WA 8 k.
IKAEY R B TR HE 50 55— AR R B0,

22 se [ 4un0€t} (1D
TC u

My EF 1A, A5 (12):

2
MR = %exp[—4nd206t] (12)
= (12) P 2[R ik BOxt &, ml 452K (13):
6 4n20.
ln(MR):lng—TZ‘ (13)

K O, A BARG TR L, m?s™s ¢ 9 T 1R
8], 53 d WP RHRDRL Y ELAR, m
B 30 (13) FAH 5C 52 56 B 405 45 B LA B

AR HE . Fh B B2 n]SRAG P34 SR T HU R AL
d2
Oe:—aﬁ (14)

K, a K In(MR) 5 ¢ UG LB R,
R T O, FEAS[RIWI 5 5T £ . #) R 75 7K 2R Rk
P R4 T WA AL I . BE A5 W Rk T i ALY B
TR K, O, Je¥ KW/, K 8 s, £
B R R 4R B W) 4R K R R, PR T DA
WEMSCHE 22 () (00 Rl i, PRk A% T 3R 1S . B ) 4
JoT B R AR T K Fead i 2 R B R AR 45 T
A%, IITREAR T 0 AL B 3. iR Bl 40 g,
06 B K F R 30% B, O, 43 i) ik B 5 KAE . W46
J i /INTF 40 g B, B W A A 3R i T B 19 38 R
P HJE Y R T 40 g B, PN AT DL AL 1) H
T fig 1 /0 B ORI ICRE I, 3 B O, B I/
M EIKRNT 30% W, O, Bl £ 7K 2 ) 18 K i 354
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Fig.5 Fitted curves and normal distribution plots of different drying kinetic models: Page, Modified Page, Simplified Fick’s diffusion, and Wang and

Singh against experimental data: (a, d) fitted curves with normal distribution for initial mass 50 g, initial moisture content 30%, microwave power 540 W;

(b, e) fitted curves with normal distribution for initial moisture content 30%, initial mass 20 g, microwave power 540 W; (c, f) fitted curves with normal

distribution for microwave power 900 W, initial moisture content 40%, initial mass 50 g
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Table 8 Results of fitting the Modified Page model to the experimental
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I P RE 2 T4 A ) v s B2 B ) 7K 0 I s
. .. R -~ S : 5
Condition factors Condition RSS F-value Ei E/‘J ﬁ%ﬁ Z[K Eﬂ: % q:, , m‘ L% FH Arrhenius 75%% ;E 'fﬁ
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: AT
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Fig.6 Relationship between Modified page model and experimental data: (a, d, g) fitted curves, normal and residual distribution plots for different initial
mass conditions; (b, e, h) fitted curves, normal and residual distribution plots for different initial moisture content conditions; (c, f, i) fitted curves, normal

and residual distribution plots for different microwave power conditions
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Fig.10 Temperature field distribution plots: (a) simulation plot for material thickness of 15 mm; (b) experimental and simulation verification plot
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