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ABSTRACT Compared to single-agent systems, multi-agent systems exhibit advantages such as high efficiency and strong
survivability in task execution. However, an increase in distance increases the difficulty for agents to communicate with each other and
also severely limits the task-performance range of multi-agent systems. A potential solution to this problem is the use of communication
relays between agent nodes. Given their small size, low cost, and flexibility compared to traditional satellites or ground stations,
unmanned aerial vehicles (UAVs) are gradually playing an increasingly important role in the field of communication relay. This study
focuses on aerial multi-agent systems. Specifically, fixed-wing UAVs are used to enhance the network communication performance
among multiple agents. These agents operate in the air, and their motion trajectories are determined by their respective tasks. This study
proposes a model-based adaptive motion control method for UAV communication relay, which solves the relay motion control problem
by simultaneously considering unknown radio frequency (RF) channel parameters, unknown multi-agent mobility, and unavailable angle
of arrival (AoA) information of received signals. We first model and mathematically express the problem of using relay UAV to enhance
communication between airborne multi-agent systems and select the received signal strength as the communication optimization
indicator. Based on this, we subsequently consider two aspects: unknown channel parameter estimation and optimal relay position
search. For the former, we propose an estimation algorithm based on Gaussian process learning and online data measurement to estimate
the wireless channel parameters between the UAV and each agent. For the latter, we consider two different relay applications: end-to-end
communication and multi-node communication. For the optimal relay position search under end-to-end communication, we propose a

line search algorithm and demonstrate its stability and convergence. Regarding the optimal relay position search under multi-node
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communication, we propose a general gradient-based algorithm, which provides a target relay position at each decision time step,
reducing two-dimensional search to a one-dimensional search. We analyze and provide the computational complexity of these two
different optimal relay position search methods. Notably, the gradient-based optimal relay position search algorithm under multi-node
communication is also applicable to end-to-end communication scenarios. However, given the smaller computational complexity of the
line search-based optimal relay position search method compared to the gradient-based method under end-to-end communication, we
recommend using the line search-based algorithm in end-to-end communication. Additionally, while solving the aforementioned two
important problems, solving the problem of predicting the positions of multi-agents and guiding the relay UAV to the optimal relay
position searched in real-time is necessary. This study uses a position estimation algorithm based on Kalman filtering and a guidance law
based on the Lyapunov guidance vector field to solve these two problems. Finally, the simulation experiments are designed to support
communication from stationary to moving nodes and from end-to-end to multi-node communication. Meanwhile, to compare the impact
of different channel models and wireless channel parameter estimation algorithms on the relay implementation performance of the
network, simulation experiments are conducted. We compare the relay network performance achieved by the proposed channel model
with that of the distance channel model, as well as the performance of the proposed Gaussian process learning algorithm with the
maximum likelihood estimation algorithm. Simulation results show that the proposed relay motion control algorithm can drive the UAV
to reach or track the motion of the optimal relay position and improve the network performance, and the improvement is better than the
methods based on the distance channel model and the maximum likelihood estimation.

KEY WORDS unmanned aerial vehicle; relay; channel estimation; Gaussian process learning; line search; gradient-based method;
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PR A 2 MBI 2K (17) B BT 7 2 i o

3 mPBRUAERE

E NSRBI Rl T DO B R IE AR R K
TIE ML A GE R e Ak B R, R A S
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Fig.3 [Illustration of end-to-end communication
%jtﬂ:ﬁéi E 1:/ﬁ I%l ;!E& J= min{Spl,pu,sz,pu}%/ﬁl\
THREEE W p;, AT
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Vi(py =

op

=0 (26)
ulpu=p;

T 58 (25) 19 AR BB = min(S pypueS g 7
A7 A2 min() FRRE, O3, 0L EOR ST

VSpipes ESpipe <Sprpy
VJ= VSPz»Pu’ ifSpl,pu > S prpu Q7D

Other,

FEF 1: R E Al Ak B pr 0 TSR A
pus (DS p 5 =S pops @pu=p1+a(p2—p1), 0<
a<l.

WEBA: 551 (2) R AL E pu i T 11 p1 Fl po i X
H e Berh, T LLE i DA P 25 Bk E B -

SEBLFE SRR, RIANSR py = p*, WIS 5, o (P0) =
S p.pu(P0) H.pu = p1 + a(p2 - p1).

{BBES py pu > S propus RIE (27), VI=VS p, . W
VS propo =0, 2 HALE dp =0 A REZRAT, T [F] I S 5
BB AU L LS )y > S pyopes IIE ) <0, X JEANT]
RERY, BT MBS 7. RV, S, pu < oo HO AR
WA ST BRI, S p1.pe(Pu) =S p p, (D).

FHERIZ pl ¢ p1.p2l, WIRAFTE S p’ €[pr, p2 )W 2
Sprat =S gy T p/ A S e A T 23 2, HLE S e =
SppiZSpiw =Spws TFE'i:dm 2 Sdpyy ﬁdm,pﬁ <dp,p>
jﬁﬁﬁﬁdl’hl’ﬂ +dp, p <dpp +dp,p 5 A s iy =
B e B, I Z AR T8 =30, e S 4510
AL, TR phglpr, po ) 2 H5 1R 19, Bl pe
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FHLA T AETE ], BI S )y o =S poop B X puc
[p1, p2 1AL, WA py = p.
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lfSpl Pu = SPZ »Pu
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)37 5k . 25V Ge B b eR B0 E L K
HR AR A ) o B R S e A, AT R UE 9 S X i
FY R ARG E ST B b 4k a8 48 R i
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L E .

AR 20 TR sk R 2 S RN AE 2 B I A Y
it R, X BeIR S h kT AWML Z B {5 E S
AT AT

WUR 3. BT AR R B, PR AR R A
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PR 4. T LGVF T 5| 4, 3K fd 6 A ML 1T
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iy % it EAE R, A 8 N R UG AR B A R A
P 1 s AT R, RN T,
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Table 1 Pseudocode of UAV online autonomous motion control

algorithm supporting end-to-end communication

Algorithm of UAV online autonomous motion control for end-to-end
communication (Algorithm 1)

1 Init: p = po.ug

2 forty=t1,t2, ", t

3 Use the Kalman Filter to predict node positions P={p;}(i=1,2, ",
N) at time #;,; based on noise observations

4 Use the GP algorithm to estimate the channel characteristics, y;
and 0',-2, of each node based on noise RSS observations during
time [tx—1,#) using Egs. (23) and (24)

5 Use a line search to identify the optimal @€ (0,1) such that
position py=p; +a(p2 - p1) fulfills S, p, =S p,,p, » Which is the
optimal relay position pj, at time instance f

6 UAV flies toward pj, during time interval [#;, fx41)
7  End for

SEH 2. R T UK rp gk o A HLIR SR B AL A
B, JC LAY RS 0 25K T A de R B, RP
v>max(vi,vp).

UEBH: & R P 4k A B S A 28 A g vy, A

Jerp gk Jo A\ ML RE 5 Ui 8 B p, T b 2T A2 AR
v>ve AREE R 1S5 pt=pi +a(py - p1), KFTT
By =vi+a@r-v), HHae© ), BARA v=Ip*l<
max (vl [v2l). 402 v>max(vi,va), WA v> (v,
= ED 111, 3 2 F533E.

FEHE 2 LA, FE2s Rt il A S LT, KT
PR R R AR Y R K AT R B 1Y T A HLE
YRR, B T TR AME S AR E

B VUSRS, Kb s -1 a
TEAHRAE. KF 95 24 B A BT 02 x 12x4%), B2
I e ok R SR 8 1 THAR AR 2% B O UL AR T op?),
o) A FE4ERT. GP 5 24 FE R M 04 x ),
HApcRBRP AR, — W RATNERE R
0(z), Hor &AW E. Tl H i KT 4, Kt
R R T8 GP A kTR, Bk 1K
ZJE R Ok x «3).

32 STRBEGHHNERPHRUEER

e 4 iR, = h 28 ek 25 A1 AR
HB ] RE T B A ST IE AT, AR, B AT
SR MEBEAN R, DI, 3.1 795 FP 4 A A4 min() 2R 5L
AN FAE T PR 271 s S M4 T BE. 2%
HR O, A SOl R R B H b ek BRI £ 5 A
(1) 0 2 PERE, I8 o 4k e A BLIK 3l 21 i A H gk A
Hpi:

N
. : 1
pu:arglr’?ég; m,niEM 28

1 1»Fu
B CTTe — MR R TS R, B 4515 18 A2 5 Il
HTF R == =Ay =2, BT R (26)
= (28), AT15

1
. Gi
xu = 1
?’ (29)
. a)’i
Yu = 1
G;

Ao XLy A dk B AR bR, B pl=
(y0)s GoE B AL u S 37 fin Z (A B 5 18 4 25 . 4%
Ja, 20 29) BV B 1 AR IR 5, ik al LL3RAS
220 OB A A e Ak 7 B R R AR

SR, L I L GBS B2 IR A1)
BARE Y 08 3 A5 2 Fh R R 5 ), S B AR ME
WA =2 = =y =2, 2R EN K (28) 4
SR LA, T BT Z 4R, MEERCR, L, AR
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Fig.4 [Illustration of multi-node communication
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B, pi i FH Kalman 18 7 2% 7000 1) 55 I5n, FEDAY

2 o A I TR 4 4 R JB) = ZS

0<B<2n, [Nk, EASEETT W) B* TLM??#%J.

= J (30)
B = =arg max ®B)

IO T — D28 p, HI, FHEI Ry
%R LR (30), Hor g 48 T1 0 45 1 fiE fe th
B 77 ). BT B EE R T J7 6, T AMLAE B — > [a]
KA B AR R a4z =l (31) B

pl*l,,k = pu+7y-(cos B, sin B*) (31)
Ay AUE LR — 1, (cos B, sin B°) &
M H bR A7 B B B ) ] SR AR 22T AGE AR T
A TR AR B R )RR B A A AR 2 PR,

R 2 NS AL, AR 1R
AR PE S Ak BRI DAAR 25 ) M BLAA 1 2 1Y 52 %
FE R ONK®). B AR 2 J& —Fhal 0y 732, v LA
I FH T i % s 38 15 A B UL R Ak B AR R, (B2
Bk AR E R TR R/, FIE e
S o i 388 £ TP A P B 1.

3.3 LGVF &3]

A SCAd ] Frew 48 P9 42 1 19 LGVF #2 1fi 88 >k
Fgéizﬂ;ﬁtéﬂ’wﬁﬁﬁﬁﬁ%%,Mﬁﬁ@@fﬁ]ﬂﬁ}\ﬂjﬁiﬂ
e AE Ak E py = 10T 2 r=pu—py = Doy
KR TAMLY FJUME?FHXTT;:UEM‘HXMJEW%,
HEH AN E BRI

Pi, Pu(ﬂ)

K2 TREZVAEFLANIEL B skl

Table 2 Pseudocode of UAV online autonomous motion control

algorithm supporting multi-node inter communication

Algorithm of UAV online autonomous motion control for multi-node
communication (Algorithm 2)

1 Init: Pl =Po-Yus
2 fortf=t1.,tr,, tg

3 Use the Kalman Filter to predict node positions P={p;}(i=
1,2,---,N) at time #;,| based on noise observations

4 Use the GP algorithm to estimate the channel characteristics, y;
and 0',2,1':1,2,”-,N, of each node based on the noise
observations of the received signal strength during time [fx—1,%)
using Egs. (23) and (24)

5 Predict the received signal strength S 5, v 5) at position piB)=
pu+[RcosB,RsinB]T,0<B<2n from each node meM at
position p; using Eq. , then use a line search method to solve the
problem in Eq. (30). Next, determine the target position of the
following time step using Eq. (31)
6 UAV flies toward pj, during time interval [fx, fxs1)

7  End for

Xr = vy cosyy — X, = vrcosn
Yr = vy singy —y5 = vpsing (32)
'j’u =Wy = n/kn(wu)
Jﬁ s v = IR AE R 3 BE 5 o AH XA ) 515 ko ()
AR AT

vf:vlzl+)'cf1 + 972 2y (K cosyy + Yisingy)  (33)

n= arctan(&) = arctan(w) (34)
Xr Vy COSYry — Xy
2 — vu(Xh cos iy + V7 siniy
k) = g ) ) (35)
164 2800, 38 o B/ MR T R R )
I(r) = (IrlP* = r3)? (36)

] R 5 R R f () T LA R 3R 48 T A AL
PAEAR rg RATE ST B A LT -

) rr—r2 2rr, Xt
=[] T A L
37
e (g, 7o) 78 TEAH XS AL AR rv 201 B2 1 3 O it
r=|Irll. 455 T 0% 37 RV £ (r) 2R U R BRI
B2

2
. —4vor(r2 - ri)

S0 B 509 A O L 1] £ ma FRH XS AT 18] 1 22 Al R
fa AT AR TR R
yr~(r2—r§)—xr-2rrd

= arctan (39)
n X (P2 =r2) +yr-2rrg




B ol ol 45 - 17 1] 23 vp 22 0 BEAR R G2 A4 vh 4k T A Bz s il 5 1

<1717 -

rdr2

(r2 +r§)2

K HI ) BREE 42 %% (Heading tracker controller,
HTC) K35 T AMIER SR EGTHIALE, 456
na F g AT SRSk LT A A2 AR gy

d

ky(ra)
X KfE— 2R —n < (p—ng) <t AL ANLIZ Bh
Zy9, W18 42 0

llﬁcl = max(wWy,max» |wu')

4 PHAERSWS

AR 3 3 £ L S 6 ok 4 E BT 4 h 4k e A HLTE
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JC ML SR 1.3 745 b ik 19 Kalman 8 3553 12 A
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$& Hh 0 R T e K ALK Al 1107 (Maximum likelihood
estimation, MLE) ¥ A [R5 18 £l 1153072 o A0 A S
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Table 3 Channel parameters (stationary end-to-end communication)

(400

14 =4vg

41D

gy = —K{n-nay+

(42)

Item Transmission power/ mW Channel gain Path loss factor
Agent node 1 200 100 2.8
Agent node 2 100 100 3.0

SEfEIE AL, A 2.2 Y GP BRI AT, AR
TR RIAE 1 2090 CHERML A E T,
T AR5 i 0 AT BB A A s B, Xk R
fEVERESR b AL SN 6 Fri.

K 5 oh = A5 RO JE AL BEAR (49 90 1R
frE, Hoh B O AL, B OO R R, =
A TR B0 0 ) T 2k A O T A [R] D7 96 AR A Y T
LAk AT LI, JHG R €8 D 7 SCT5 kR I Y
RATHUIE, 206 0 FE T E R ARLIRAG T 7 1 % 1
QAT I, 2 (5 Dy 5k T R ASE AR 114 T 3 R IV 1Y

R4 LAPLSE R SRR AL E
Table 4 Initial positions of UAV and agent nodes
Ttem X coordinate/m Y coordinate/m
Agent node 1 410 2276
Agent node 2 7964 2276
Relay UAV 3195 6704
10000
= Relay trajectory based on MLE
9000 Relay trajectory based on distance model
= Relay trajectory based on GP and line search
8000
7000 UAV
6000
g
= 5000
4000
3000 7 Agentl Agent2
2000 . =
1000
0 1 1 1 1
0 2000 4000 6000 8000 10000
X/m
B S AR T TN AT RN H (IS £3)

Fig.5

(stationary end-to-end communication)

Comparison of relay UAV flight paths under different methods
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g 76
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g
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£ 80
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Z —84r Relay based on distance model
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Time/s
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Fig.6  Comparison of network performance under different methods

(stationary end-to-end communication)
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Fig.7 Comparison of relay UAV flight paths under different methods

(stationary multi-node communication)
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Fig.8 Comparison of network performance under different methods

0 50

(stationary multi-node communication)

MIEL 8 T L H, ASSCHR H A9 3045 2 i ad £
PERERRAL, HAERERSE s 5 T R R BRI 1558
W) 38 1 1 R IR T AR SRk, 3 R T e R AR
SRAS T I7 VR X AR R 38 FEAT A 3T B BCR A AR S
SRV B 5 T TP R A O AR Y O R A 0 0
PEREAL T = h iR AR A9 A2 8, v 236 15 OR Fe 2.

SLH— ML TR T AR, Bk T A



B ol ol 45 - 17 1] 23 vp 22 0 BEAR R G2 A4 vh 4k T A Bz s il 5 1

SCOT AR SRS v Lk B e R AR Y T AT M A
M, TEEE e SCE R LR b iE s
AEME 1R T B9S2 6 25 S DA B IR A 3 E AT LA
(14 52 B 2 B
4.3 BB iHITiRIEE

SO =, il Ak LA 32 3 G s X
Uity 388 A (0 a5 22 Rl R A7 4k, e AHLS B RE AR Y
S Z B SR 5 R, TANLFE LA
TH X S S SR BB AR S 10 mes,
HAb s SR 4.1 WL 88—, 22T A [F 4k
T RAT B A A 9 E i, X 1 ) 4% 3 A 7 Rk
febr ARt an & 10 s,

£S5 [FESH EEhExTRTE)

Table 5 Channel parameters (mobile end-to-end communication)

Ttem Transmission power/mW  Channel gain  Path loss factor

Agnet 1 100 200 2.8
Agent 2 100 150 32
10000 - —
Relay trajectory of theoretical optimal
9000 | Relay trajectory based on MLE
= Relay trajectory based on GP and line search
8000 - Relay trajectory based on distance model

Motion trajectory of agent

7000

r K UAV
6000 | VORe
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™
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e
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2000 a,
<7 Agent2
1000 F Agentl

0 . . . .
0 2000 4000 6000 8000 10000
Xim
B9 AFEE T IEANLP AR AT AR L (18 Sl 3 s 1)
Fig.9 Comparison of relay UAV flight paths under different methods

Y/m

(mobile end-to-end communication)
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Fig.10  Comparison of network performance under different methods

(mobile end-to-end communication)
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(mobile multi-node communication)
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