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摘    要    为了提高空中多智能体系统的网络性能，本文提出了一种基于模型的无人机通信中继自适应运动控制方法. 通过联

合考虑未知射频信道参数、未知多智能体移动性和接收信号的不可用到达角信息来解决中继运动控制问题. 提出一种基于高

斯过程学习和在线数据测量的估计算法，用于估计无人机与各个智能体之间的无线信道参数. 考虑了两种不同的中继应用情

况：端对端通信和多节点通信. 针对端对端通信提出一种线搜索算法，给出并证明了该算法的稳定性和收敛性；针对多节点通

信提出一种通用的基于梯度的算法，在每个决策时间步长提供一个目标中继位置，将二维搜索降低到一维搜索. 仿真结果表

明，所提出的中继运动控制算法能够驱使无人机到达或跟踪最优中继位置的运动，并提高网络性能.
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ABSTRACT    Compared  to  single-agent  systems,  multi-agent  systems  exhibit  advantages  such  as  high  efficiency  and  strong

survivability in task execution. However, an increase in distance increases the difficulty for agents to communicate with each other and

also severely limits the task-performance range of multi-agent systems. A potential solution to this problem is the use of communication

relays  between  agent  nodes.  Given  their  small  size,  low  cost,  and  flexibility  compared  to  traditional  satellites  or  ground  stations,

unmanned aerial vehicles (UAVs) are gradually playing an increasingly important role in the field of communication relay. This study

focuses  on  aerial  multi-agent  systems.  Specifically,  fixed-wing  UAVs  are  used  to  enhance  the  network  communication  performance

among multiple agents. These agents operate in the air, and their motion trajectories are determined by their respective tasks. This study

proposes a model-based adaptive motion control method for UAV communication relay, which solves the relay motion control problem

by simultaneously considering unknown radio frequency (RF) channel parameters, unknown multi-agent mobility, and unavailable angle

of arrival (AoA) information of received signals. We first model and mathematically express the problem of using relay UAV to enhance

communication  between  airborne  multi-agent  systems  and  select  the  received  signal  strength  as  the  communication  optimization

indicator.  Based  on  this,  we  subsequently  consider  two  aspects:  unknown  channel  parameter  estimation  and  optimal  relay  position

search. For the former, we propose an estimation algorithm based on Gaussian process learning and online data measurement to estimate

the wireless channel parameters between the UAV and each agent. For the latter, we consider two different relay applications: end-to-end

communication and multi-node communication.  For  the optimal  relay position search under  end-to-end communication,  we propose a

line  search  algorithm  and  demonstrate  its  stability  and  convergence.  Regarding  the  optimal  relay  position  search  under  multi-node 
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communication,  we  propose  a  general  gradient-based  algorithm,  which  provides  a  target  relay  position  at  each  decision  time  step,

reducing  two-dimensional  search  to  a  one-dimensional  search.  We  analyze  and  provide  the  computational  complexity  of  these  two

different  optimal  relay position search methods.  Notably,  the gradient-based optimal  relay position search algorithm under multi-node

communication is also applicable to end-to-end communication scenarios. However, given the smaller computational complexity of the

line  search-based  optimal  relay  position  search  method  compared  to  the  gradient-based  method  under  end-to-end  communication,  we

recommend  using  the  line  search-based  algorithm  in  end-to-end  communication.  Additionally,  while  solving  the  aforementioned  two

important  problems,  solving  the  problem  of  predicting  the  positions  of  multi-agents  and  guiding  the  relay  UAV to  the  optimal  relay

position searched in real-time is necessary. This study uses a position estimation algorithm based on Kalman filtering and a guidance law

based on the Lyapunov guidance vector field to solve these two problems. Finally, the simulation experiments are designed to support

communication from stationary to moving nodes and from end-to-end to multi-node communication. Meanwhile, to compare the impact

of  different  channel  models  and  wireless  channel  parameter  estimation  algorithms  on  the  relay  implementation  performance  of  the

network, simulation experiments are conducted. We compare the relay network performance achieved by the proposed channel model

with  that  of  the  distance  channel  model,  as  well  as  the  performance  of  the  proposed  Gaussian  process  learning  algorithm  with  the

maximum likelihood estimation algorithm. Simulation results show that the proposed relay motion control algorithm can drive the UAV

to reach or track the motion of the optimal relay position and improve the network performance, and the improvement is better than the

methods based on the distance channel model and the maximum likelihood estimation.

KEY  WORDS    unmanned  aerial  vehicle； relay； channel  estimation；Gaussian  process  learning； line  search；gradient-based  method；

wireless networks

与单一智能体系统相比，多智能体系统可以

更高效、更经济地协同完成任务 [1−2]. 在过去的几

十年里，多个智能体在恶劣的未知环境中协同工

作以完成整体的任务目标，在军事和民用领域中

都得到了广泛的应用，且相比单智能体显示出极

大的优势[3]. 通信和信息交换是多智能体系统取得

任务成功的关键要求，然而，距离的增加使得系统

中的智能体节点很难达到这些要求[4]. 解决这个问

题的一个可能方案是在智能体节点之间使用通信

中继 [5−6]，而无人机 (Unmanned aerial vehicle, UAV)
特别适合执行这项任务 . 传统的通信基站不够灵

活且成本高昂，无人机由于体积小、成本低、机动

灵活等优点，在通信中继领域逐渐发挥越来越重

要的作用 [7]. 相较于地面和卫星中继，无人机的中

继效果更好 [8]. 此外，这种无需人工的即时通信中

继可以轻松部署 (例如可以在通信链路故障时快

速部署)，因为它们可以快速到达任务区域，而不依

赖于道路或现有的基础设施，并且可以轻松地改

变位置以适应动态通信环境，特别是在恶劣的环

境中[9]，具有高适应性和生存能力强的优势.
在中继无人机运动控制的研究中，智能体节

点可以是静态的，也可以是移动的. 对这类问题的

研究通常可以分为两类：无模型和基于模型[10].
无模型运动控制方法由数据驱动，通过周期

性地测量数据并解析，最终获得最优控制点. Dixon
和 Frew[11] 提出了一种基于扰动的分散极值搜索控

制结构，用于端对端通信中的链容量优化. 极值搜

索控制 (Extremum seeking control,  ESC)是一种自

适应控制方案，能够利用性能输出或其梯度的测

量实时搜索最优设置点. 然而，梯度估计中的目标

函数只有在中继无人机到达相关位置后才能测量.
因此，利用基于李亚普诺夫制导矢量场的方法，建

立一种新的链式控制器，只需获取无人机的位置

和采样的目标函数值，即可获得在特定位置扰动

的目标函数[12]. 然而，该方法假设射频 (Radio frequency,
RF)环境是准静态的，而射频环境受智能体运动、

天气变化等因素影响，通常是变化的，因此在实际

中很难满足此假设.
在基于模型的运动控制方法中，需要建立射

频信道模型. 在受通信影响的任务中，基于距离的

信道模型最常被使用 . 这些模型实际上被过度简

化，使用仅考虑地理范围的控制器导致通信性能

下降，因为通信不仅受距离影响，还受仰角、天线

类型、发射功率等多种因素的影响 [13]，因此，基于

射频分布的模型在研究中被使用 . Yan等 [14] 通过

将随机信道学习框架与机器人路由优化相结合，

提出了一种概率路由形成和运动规划方法. Ono等[15]

提出了一种可变速率中继方法，以便在灾难性事

件期间实现地面站之间的通信，并设计了中继无

人机的转弯半径和飞行高度 . Mozaffari等 [16] 提出

了一个用于优化多架无人机部署和移动性控制的

框架，旨在从地面物联网 (Internet of things, IoT)设
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备高效节能地收集上行数据 . Choi等 [17] 提出了无

人机中继的能效最大化问题，使用固定翼无人机

作为连接两个固定地面节点的通信中继，并得到

了封闭形式的次优解 . 所有这些工作都假设节点

是静态的，但这在许多应用中无法实现.
Oh等 [18] 提出了一种动态环境下的基于非线

性模型预测的轨迹规划策略，使用无人机作为通

信中继节点，以扩大海军舰艇编队的通信链路并

提高通信质量 . Zhao等 [19] 提出一种基于两阶段联

邦学习的解决方案，用于引入无人机和异构计算

资源的无人车车队，降低了系统的能耗. Thammawichai
等 [20] 提出了一种混合整数优化方法，用于多跳分

层聚类的自组织网络，以获得一种节能的信息路

由方案，实现通信和计算能量之间的最佳权衡 .
Fan等 [21] 使用无人机检测和修复无线网络中的覆

盖漏洞，提出一种有效的在线检测和调度方案，确

保大规模物联网网络中的高效数据传输. Bezzo等[22]

提出了基于势函数和路由优化的分散连接策略，

通过天线分集和极值搜索优化，实现自主通信中

继，已被证明适用于移动的地面节点，但没有对结

果的收敛性、稳定性、有界性和最优性进行分析

或数学讨论. 虽然这些研究工作，考虑了移动节点

和更好的信道模型，但仍然假设无人机控制器事

先知道信道参数. 同样，这些在许多情况下是不现

实的，特别是在具有各种未知节点类型的系统中.
Chamseddine等 [23] 提出并证明了一种仅使用

接收信号强度 (Received signal strength, RSS)和到

达角 (Angle of arrival, AoA)的多地面单元系统中

继无人机移动性控制的制导律，与 Dixon的方法相

比，该制导律对节点的机动性要求有所放宽. 该制

导律基于路径损耗指数为 2的思想，然而根据信

道特性和环境特性，该指数实际上在 2～6之间变

化 [24]. 此外，如果中继无人机配备单个各向同性天

线，则获得接收信号的 AoA相当困难[25].
本文提出了一种新的中继无人机运动控制框

架和算法，该方法面向空中多智能体系统，通过联

合考虑未知的 RF信道参数、未知的多智能体移动

性以及接收信号的不可用 AoA信息，仅使用在线

测量的全球定位系统 (Global positioning system, GPS)
位置信息和接收信号强度信息，同时在考虑无人

机运动约束的情况下，将单个中继无人机驱动到

预期位置，以获得最优通信网络性能. 在确定无人

机的最优中继位置时，使用卡尔曼滤波 (Kalman filter,
KF)来预测智能体节点的未来位置，然后基于高斯

过程 (Gaussian process, GP)学习和在线数据测量算

法来估计无人机与各个智能体之间的未知信道 .
考虑了端对端通信和多节点通信两种情形 . 通过

利用空中智能体的运动估计、当前无人机的状态

以及估计的环境信道状态、算法求解出特定时间

范围内的最优目标中继位置，并驱动无人机到达

或跟踪最优中继位置，从而优化网络通信性能. 

1    系统模型和问题表述
 

1.1    通信中继场景

H

如图 1所示，由多个智能体组成的系统 (如多

个旋翼无人机 )在空中执行任务 (如探测或监视

等)，其高度为 ，由于空中任务智能体携带载荷的

能力有限且已经携带了用于探测或监视任务的专

用设备，导致其通信能力有限，严重影响了多智能

体系统协同执行任务的区域范围 . 为了解决这一

问题，由搭载了专用通信设备的固定翼无人机在

空中充当中继，为正在执行任务的空中多智能体

系统提供良好的通信中继服务. 图 1中，黑色曲线

为任务智能体的运动轨迹，青色曲线为中继无人

机的飞行轨迹，红色实线为中继无人机与任务智

能体的通信链路.
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图 1    通信中继场景示意

Fig.1    Illustration of communication relay
  

1.2    无人机运动模型

N ni∈M= {n1 n2 nN }
u

pu= [xu,yu]T

Ω [vu,x,vu,y]T

考虑由 个空中智能体 , ,···, 
和一架中继无人机 组成的网络化协作系统，智能

体在空中执行任务，无人机作为中继为处于任务

状态的多智能体增强通信条件，从而提高协作完

成任务的效率. 令 表示无人机在任务区

域 中的位置向量，速度向量为 ，并且有[26]
vu,x = vu cosψu

vu,y = vu sinψu

ψ̇u = ωu, |ωu| ⩽ ωmax

（1）

ψu∈ [0,2π) vu
ψ̇u = ωu

式中： 是无人机航向角； 是无人机飞行

速度； 是无人机的转弯率，由于飞机操作性

陶灿灿等：面向空中多智能体系统的中继无人机运动控制方法 · 1711 ·



ωu,max

ϕu,max

能的限制，最大转弯速率 受到最大横滚角

的限制：

ωu,max(vu) =
g tan(ϕu,max)

vu
（2）

g

ψ̇u

式中： 为重力作用下的加速度常数 . 本文假设固

定翼无人机以恒定的速度在固定的高度飞行，控

制量为转弯率 . 这在许多情况下是现实的，并且

无人机的加速度不会影响到本文工作的重点，因

为本文工作是一个确定中继无人机最优中继位置

的决策系统. 

1.3    基于卡尔曼滤波的位置预测

尽管中继无人机可以通过 GPS获知智能体节

点的位置，但是其未来时刻的位置无法发送给无

人机，本文使用一阶自回归 (Auto-regressive,  AR)
模型为空中智能体的运动建模，同时基于采集的

节点当前位置信息以及 KF来预测下一时刻智能

体节点的位置.
xi(k)= [xi,k ẋi,k ẍi,k yi,k ẏi,k ÿi,k]T

ni k xi,k ẋi,k ẍi,k yi,k ẏi,k

ÿi,k ni x y

k k+1

令 , , , , , 表示智能体节

点 在 时刻的状态，其中 、 、 和 、 、

分别表示智能体节点 在 和 方向上的坐标、

速度以及加速度. 根据 AR模型，从 时刻到 时

刻的状态转移方程为：

xi(k+1) = Fxi(k)+ηi(k) （3）

F =



1 Ts q1 0 0 0
0 1 q2 0 0 0
0 0 e−αTs 0 0 0
0 0 0 1 Ts q1
0 0 0 0 1 q2
0 0 0 0 0 e−αTs


（4）

q1 = (e−αTs +αTs−1)/α2 （5）

q2 = (1− e−αTs )/α （6）

F xi(k) xi(k+1)

ηi(k) Qi(k) =

σ2
ηI6 I6 6×6

Ts α

α α

k ni

式中： 为状态转移矩阵，反映状态 和

之间的转换； 表示零均值、协方差矩阵

(σ2 为方差)的过程噪声，其中 是 的单位

矩阵； 为时间间隔； 为智能体运动的关联参数，

越小，表示智能体运动越慢， 越大，表示智能体

运动越快 . 在 时刻对智能体节点 的位置的带噪

声观测可以给出为：

zi(k) = Hxi(k)+ vi(k) （7）

H =
(

1 0 0 0 0 0
0 0 0 1 0 0

)
（8）

H vi(k)

Ri(k) = σ2
vI2 I2 2×2

式中： 为测量矩阵； 表示零均值、协方差矩

阵 的观测噪声，其中 是 的单位矩

阵. 然后，卡尔曼滤波步骤可以给出如下：

预测

x̂i,k|k−1 = Fx̂i,k−1 （9）

Ei,k|k−1 = FEi,k−1FT+Qi,k−1 （10）

卡尔曼增益

Ki,k = Ei,k|k−1TT(TEi,k|k−1TT+Ri,k)−1 （11）

状态测量和协方差矩阵

x̂i,k = x̂i,k|k−1+Ki,k(zi,k −Tx̂i,k|k−1) （12）

Ei,k = (I4−Ki,kT)Ei,k|k−1 （13）

E K T
x̂i,k−1 k−1 i ni

x̂i,k|k−1 k−1

ni k

式中： 、 、 分别为预测矩阵、增益矩阵和转换

矩阵 .  为 时刻对第 个智能体 的状态估

计值； 为基于 时刻的状态值，对智能体

在 时刻状态的估计值. 

1.4    问题表述及方法框架

pi= [xi yi] i =1 2 N ni

hu vu
ψ̇u

本文通过控制中继无人机的运动，将中继无

人机驱动到期望的位置，从而获得最优的网络性

能. 令 , , , ,···, 表示智能体节点 的位

置，由于本文假设无人机的高度 和飞行速度 保

持不变，仅剩的控制量为转弯率 ，于是，该优化

问题可以数学表述为：

ψ̇∗u = argmax J(ψ̇u)
|ψ̇u|⩽ωu,max

（14）

J(ψ̇u)式中： 为表征整个网络通信性能的目标函数.
求解式 (14)中的问题相当困难，因为目标函

数仅直接受中继位置的影响，而中继位置又与无

人机自动驾驶系统耦合. 因此，本文通过确定最优

中继位置来制定决策系统，然后利用制导律将无

人机驱动到该中继位置，且本文重点集中在前一

个问题上，该问题可由式 (14)导出，并给出如下：

p∗u = argmax J(pu)
pu∈Ω

（15）

p∗u式中： 为最优中继位置. 本文后续考虑了两种不

同的中继应用场景，即端对端通信和多节点通信，

两种场景下对应的具体网络性能目标函数分别如

式 (25)和式 (28)所示. 本文对应的求解框架如图 2
所示，其中两个核心的工作为：(1)提出一种基于

在线可收集数据和高斯过程学习的算法，对 RF分

布未知环境的信道参数进行估计，其中只用到了

RSS和预测的节点位置信息；(2)针对端对端通信

和多节点通信两种应用情形，各自提出一种简化

的无人机最优中继位置搜索算法，并且通过李雅

普诺夫制导矢量场 (Lyapunov guidance vector filed,
LGVF)导引律驱使无人机飞行至最优中继位置. 
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2    无线信道参数在线估计

部署固定翼中继无人机是为了提高多智能体

系统的通信性能，在多智能体系统中，智能体在环

境区域中执行任务 . 这个问题的两个主要方面是

通信和运动控制，通过控制中继无人机的运动来

优化网络通信性能 . 无人机和各节点之间的信道

参数可能是多种多样的，并且无人机事先不知道 .
因此，它们应该由无人机通过在线采样进行估计. 

2.1    接收信号模型

Ω u N

ni∈M= {n1 n2 nN }

为了估计区域 RF分布，应该首先对无人机与

每个节点之间的信道参数进行表征 . 无线通信中，

接收信号强度不仅仅受到通信距离的影响，还会

受到阴影衰落等因素的影响 [27]. 路径衰落是因为

信号传输距离的扩大，导致最初的发射信号逐渐

消耗而引起，另外，路径衰落还受传播介质的影响.
假设任务区域 中的中继无人机 和 个智能体节

点 , ,···,  都配备了全向天线，且中继

无人机和空中智能体在相对较高的高度运行，考

虑如下的路径衰落模型[28]：

S pi,pu = PT
i Gi

(
d0

di

)λi

（16）

S pi,pu pu u
pi ni

PT
i ni Gi

λi

d0 di

式中： 表示位于位置 处的中继无人机 接收

到的来自位置 处的智能体节点 的信号强度；

是智能体节点 的发射功率； 是信道增益，为

无量纲常数； 为路径衰减因子，通常取值范围为

2～6； 是天线远域参考距离； 是发射器与接收

器之间的几何距离.
阴影衰落是由于收发端之间存在障碍产生

的，本文参考文献 [29]，以对数形式给出考虑阴影衰

落下的接收信号强度模型如下：
S pi,pu

PT
i dB
= 10lgGi−10λi lg

di

d0
−N(µi,σ

2
i dB) （17）

µi σ2
i式中： 表示阴影衰落的平均值； 表示阴影衰落

的方差. 

2.2    信道参数的估计

很难准确地获得信道模型，因为它需要对任

务区域的动态通信环境有完善的了解. 而 GP是一

种强大的机器学习技术，它可以被视为函数上的

高斯分布，主要用来根据观测数据推断或预测有

限测试点上的函数值 . 因此，在本文中，我们提出

了一种基于 GP的学习方法，利用收集的通信强度

数据来学习阴影衰落的影响，并将其与通信模型

的已知部分相结合. 一般来说，GP可以表示如下[30]：

fGP(x) ∼ GP(m(x),k(x′, x)) （18）

m(x)=E [ f (x)] k(x′, x)=E[( f (x)−
m(x) ) ( f (x′)−m(x′) ) ] f (x)

式中： 是均值函数；

是实过程 的协方差函数.
tk
[tk−1 tk) Pi= {pi,1 pi,2 pi,κ}∈

Ω i=1 2 N κ

Pu= {pu,1 pu,2 pu,κ}∈
Ω Di=10[lg(∥pu,1− pi,1∥) lg(∥pu,2− pi,2∥)
lg(∥pu,κ − pi,κ∥) ]T yi= [y1 y2 yκ]T

ni

令 表示决策时刻，在给定环境下，无线信道

在时间 , 期间在节点位置 , ,···,
, , ,···, 处稀疏采样，其中 为采样数. 这些信道

测量可以由无人机沿着其轨迹 , ,···,
执 行 . 令 , ,···,

与 , ,···, 分别表示智能

体节点 与中继无人机之间的对应距离向量以及

所有接收信号功率测量的向量，单位为 dB.
κ

W= {(x j y j,i)| j=1 2 κ}= {X yi} yi

ni X

u ni

于是，具有 个观测值的训练集可以表示为

, , ,···, , ，其中 是来自智能

体节点 的测量通信信道强度的向量， 是一组来

自训练数据的输入向量集合，该训练数据由无人

机 和智能体节点 的位置组成.
一般来说，用于 GP的协方差函数可以分为平

稳和非平稳，当原始函数具有可重复模式时使用

平稳协方差函数，而当原始函数没有可重复模式

时使用非平稳协方差函数 . 由于任务区域的空间

是不规则的，没有可重复的模式，因此非平稳协方
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Node position
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prediction of

nodes’ motion Predicted
node
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model
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Multi-node

communication
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图 2    运动控制框架

Fig.2    Motion control framework
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差函数更适合于此问题. 在这里，我们使用平方指

数协方差函数[31]：

k(x′, x) = σ2
f

(a
b

) n
2

exp
(
∥x− x′∥2

b

)
（19）

a=2l(x) l(x′) b=2l2(x)+ l2(x′) n

l(·) σf

式中： ； ； 是相关变量

的个数； 表示随空间变化的超参数； 是另一个

需要优化的超参数，它决定了协方差的大小. 常数

均值函数定义为：

m(x) = c （20）

c其中 是要优化的超参数.

θ

W

给定具有上述均值和协方差函数的 GP模型，

并且在各次采样中信道衰落满足独立性的条件

下，可以使用以超参数 (即均值和协方差函数中待

训练的参数)为条件的边际似然来评估该模型对

训练集 的适应度. 于是有：

L(θ) = lg(yi|X, θ) = −
1
2

lg |Cn| −
1
2

(yi−m(x))T

(Cn)−1(yi−m(x))− κ
2

lg(2π) （21）

Cn=Σ+σ̄
2
n INt Σ κ×κ

ki j=k(xi, x j) i j=1 2 κ

σ̄2
n yi

式中： ，其中 表示大小为 、每个

元素 , , , ,···, 的协方差函数的集

合， 是考虑噪声数据的超参数； 表示所有接收

信号功率测量的向量.
θ超参数 可以通过使用共轭梯度方法 [32] 最大

化似然函数 (21)来计算，如下：

θ∗ = argmax
θ

(L(θ)) （22）

θ x∗计算完超参数 ，当前位置附近的任一点 处

的平均值和方差可以被计算为：

µp(x∗) = m(x∗)+ k(x, x∗)T(Cn)−1(y−m(x∗)) （23）

σ2
p(x∗) = k(x∗, x∗)− k(x, x∗)T(Cn)−1k(x, x∗) （24）

µi σ2
i

因此，GP方法可以通过使用收集到的测量数

据来学习和预测式 (17)中的阴影衰落参数 和 .
 

3    最优中继位置搜索

本节提出并讨论了端对端通信和多节点通信

下无人机自适应最优中继位置搜索算法，然后基

于 LGVF控制律驱使无人机跟踪最优中继位置. 

3.1    端对端通信中的最优中继位置搜索

如图 3所示，在端对端通信中，部署一个引导

节点来完成远场区域中的任务，空中中继无人机

用于满足视线 (Line of sight, LoS)通信要求，从而

提高引导节点与控制站之间的通信性能 [33]. 在这

种场景下，信息交换仅发生在两个不同的节点之

间，并且链路性能通常受到具有较小接收信号强

度信道的制约，优化的对象主要针对信号强度最

差的信道，因此，最优中继位置搜索问题可以表示为：

p∗u = argmax
pu∈Ω

min{S p1,pu ,S p2,pu }, p1, p2 ∈ M （25）

S pi,pu pu
u pi ni

式中： （i=1,2）表示位于位置 处的中继无人

机 接收到的来自位置 处的节点 的信号强度.
 
 

Relay UAV

Airborne agent

图 3    端对端通信示意图

Fig.3    Illustration of end-to-end communication
 

J =min{S p1,pu ,S p2,pu }
p∗u

最大化连续目标函数 等价

于找到合适的 ，使得

∇J(p∗u) =
∂J
∂pu

∣∣∣∣∣
pu=p∗u

= 0 （26）

J =min{S p1,pu ,S p2,pu }
min(·)
由于式 (25)的目标函数 中

存在 函数，故其非平滑，对其分段求导如下：

∇J =


∇S p1,pu , if S p1,pu < S p2,pu
∇S p2,pu , if S p1,pu > S p2,pu
Other, ifS p1,pu = S p2,pu

（27）

p∗u
pu S p1,pu =S p2,pu pu = p1+α(p2− p1) 0 <

α < 1

定理 1：寻求最佳中继位置 等价于寻求位置

，其中 (1) ；(2) ，

.
pu p1 p2证明：条件 (2)表示位置 位于由 和 定义

的线段中，可以通过以下两个步骤来证明：

pu= p∗ S p1,pu (pu)=

S p2,pu (pu) pu = p1+α(p2− p1)

定理充分性证明，即如果 ，则有

且 .
S p1,pu >S p2,pu ∇J=∇S p2,pu

∇S p2,pu =0 d2=0 S i

di S p1,pu >S p2,pu d1<0

S p1,pu <S p2,pu

S p1,pu (pu)=S p2,pu (pu)

假设 ，根据式 (27)， ，则

，当且仅当 时才能获得，而同时 与

距离 成反比且 ，因此 ，这是不可

能的，所以假设不成立 . 同理， 的假设

也不成立. 因此， .
p∗u< [p1, p2] p′∈ [p1, p2]

S p1,p′ =S p2,p′ p′ S p1,p∗u =

S p2,p∗u ⩾S p1,p′ =S p2,p′ dp1,p∗u ⩽dp1,p′ dp2,p∗u ⩽dp2,p′

dp1,p∗u +dp2,p∗u ⩽dp1,p′ +dp2,p′

p∗u< [p1, p2] p∗u∈
[p1, p2]

再假设 ，显然存在点 满足

，而 不是最优中继点 ，因此

，于是 且 ，

进而有 ，依据数学中的三

角形边长定理，俩边之和大于第三边，该推导结论

不成立，从而假设 也是错误的，即

.
S p1,pu =S p2,pu pu∈

[p1, p2] pu= p∗u

定理必要性证明，即若 以及

成立，则有 .
p′ S p1,p′ =S p2,p′ p′∈ [p1, p2]假设存在点 ，且 以及
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p′ p∗u p∗u
S p1,p∗u =S p2,p∗u >S p1,p′ =S p2,p′

dp1,p∗u <dp1,p′ dp1,p2 dp2,p∗u >

dp2,p′ S p2,p∗u <S p2,p′ S p2,p∗u >

S p2,p′ p′= p∗u

成立，但是 和 不是同一个点 . 由于 是最优中

继位置点，所以有 ，进而

.  又 因 为 值 一 定 ， 因 此

，从而 . 这与假设推导的

相反，因此，必有 成立，定理 1的证明

结束.
α在定理 1中，目标函数仅取决于参数 ，因此，

可以采用线搜索方法来减少空中端对端通信中的

最优中继位置搜索空间 . 综合上述对端对端通信

的场景描述、网络性能目标函数的定义以及最佳

中继位置的分析和推导过程，可以归纳端对端通

信场景中未知信道参数下的最优中继位置搜索的

过程如下：

步骤 1：基于卡尔曼滤波算法预测空中智能体

的位置.
步骤 2：基于高斯过程学习和在线数据测量的

估计算法，对智能体与中继无人机之间的信道参

数进行估计.
步骤 3：基于一维线搜索算法，快速求解最优

中继位置.
步骤 4：基于 LGVF导引律，驱使无人机飞往

最优中继位置.
端对端通信下，自适应最优中继位置搜索算

法如表 1所示 . 值得注意的是，在某些情况下，中

继无人机无法随着时间的增加而收敛到最优中继

位置. 因此，需要对算法的收敛性进行研究.
  

表 1    支持端对端通信无人机在线自主运动控制算法伪代码

Table 1    Pseudocode  of  UAV  online  autonomous  motion  control
algorithm supporting end-to-end communication

Algorithm of UAV online autonomous motion control for end-to-end
communication (Algorithm 1)

1 p∗u,t0 = p0,ψu,t0Init: 

2 tk = t1 t2 tKfor  , ,···, 

3 P= {pi} i=1 2
N tk+1

Use the Kalman Filter to predict node positions  ( , ,···,
) at time   based on noise observations

4 µi
σ2

i
[tk−1, tk)

Use  the  GP  algorithm to  estimate  the  channel  characteristics, 
and  ,  of  each  node  based  on  noise  RSS  observations  during
time   using Eqs. (23) and (24)

5 α∈ (0,1)
pu= p1+α (p2 − p1) S p1 ,pu =S p2 ,pu

p∗u tk

Use  a  line  search  to  identify  the  optimal    such  that
position   fulfills  , which is the
optimal relay position   at time instance 

6 p∗u [tk , tk+1)UAV flies toward   during time interval 

7 End for

 

v>max(v1,v2)

定理 2：为了驱使中继无人机收敛到最优位

置，无人机的速度必须大于节点的最大速度，即

.
v∗p证明：令最优中继位置点的变化速度为 ，如

p∗

v>v∗p p∗= p1+α (p2− p1)

v∗=v1+α (v2− v1) α∈ (0,1) v=∥ ṗ∗∥<
max(∥v1∥ ,∥v2∥) v>max(v1,v2) v>∥v∗∥
∥v∗∥ ∥ ṗ∗∥

果中继无人机能够收敛到 ，则必须满足条件

. 根据定理 1中结论 ，求导可

得 ，其中 ，显然有

. 如果 ，则必有 ，

即 ，定理 2得证.
定理 2表明，在空中端对端通信情况下，飞行

速度快于智能体节点最大可能速度的无人机是中

继的首选，确保了中继任务的稳定性.
k

O(2×12×43)

O(p3)

O(p3) O(4× κ3)

κ

O(z) z κ

O(k× κ3)

算法 1包含 个决策步骤，其中没有一个包含

循环操作 . KF的复杂度不超过 ，因为

矩阵乘法和求逆的计算复杂度近似等于 ，其

中 为矩阵维数 . GP的复杂度不超过 ，

其中 表示样本数 . 一维线搜索算法的复杂度是

，其中 是迭代次数 . 由于 通常远大于 4，因此

每一步的复杂度主要由 GP算法引起. 算法 1的复

杂度为 . 

3.2    多节点通信中的最优中继位置搜索

min(·)

p∗u

如图 4所示，空中多智能体系统中的每个节点

都可能需要与其他节点进行通信，然而，每个上行

链路的性能不同，因此，3.1节中描述的 函数

不再适用于评估多节点通信网络的性能 . 参考文

献 [34]，本文使用如下的目标函数反映多节点通信

的网络性能，并将中继无人机驱动到最优中继位

置 ：

p∗u = arg min
pu∈Ω

N∑
i=1

1
S pi,pu

, ni ∈ M （28）

λ1 =λ2 = · · · =λN =2

首先讨论一种特殊情形，即各信道路径衰减

因子满足条件 ，通过求解式 (26)
和式 (28)，可得： 

x∗u =

∑ 1
Gi

xi∑ 1
Gi

,

y∗u =

∑ 1
Gi

yi∑ 1
Gi

（29）

x∗u ,y
∗
u p∗u=

(x∗u,y
∗
u) Gi u ni

式中 ： 是最优中继位置点的坐标 ，即

； 是无人机 与节点 之间的信道增益. 然
后，用式 (29)替代算法 1中的步骤 5，就可以获得

多节点通信中的最优中继位置求解算法.

λ1 =λ2 = · · · =λN =2

然而，现实中的无线信道参数受环境条件动

态变化、节点的运动等多种因素影响，导致其很难

满足 的假设. 要找到式 (28)的全

局最优解，需要执行多维搜索，难度较大，因此，本
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文提出一种新的基于梯度的方法来解决该问题，

且该方法具有较小的计算量.
ni i=1,2, · · · ,N

p′u(β)= pu+ [Rcos β,Rsin β]T 0 ⩽β<2π
p̂i ni S p̂i,p′u(β)

pu
R pu

p̂i ni

J J(β)=
N∑

i=1

1
S p̂i,p′u(β)

0 ⩽β<2π β∗

对于每个智能体节点 ， ，在位置

， 处接收到的

来自位于 处的节点 的信号强度 ，可以基

于前面的无线信道估计模型进行预测，其中 是

中继无人机的当前位置， 是到 的一个恒定距

离， 是使用 Kalman滤波器预测的节点 的位置 .

目标函数 现在可以重新表述为 ，

，因此，正梯度方向 可以估计为：

β∗ = arg max
β∈[0,2π )

J(β) （30）

J(β) β

β∗
仅取决于一个参数 ，因此，用线搜索方

法足以求解式 (30)，其中 是提升网络性能最快

的方向. 基于梯度爬升方法，无人机在下一个时间

步长的最优目标中继位置如式 (31)所示：

p∗u,tk = pu+γ · (cos β∗,sin β∗) （31）

γ (cos β∗,sin β∗)式中： 是预定义的量纲一的量， 是最

优目标位置的单位方向向量 . 求解多节点通信下

最优中继位置搜索问题的自适应算法如表 2所示.
N

O(kNκ3)

在算法 2中，存在 个节点，利用算法 1的复

杂度分析过程，可以很容易地发现算法 2的复杂

度为 . 虽然算法 2是一种通用的方法，可以

应用于端对端通信中的最优中继位置搜索，但是

算法 1只需要一维搜索，计算量更小，因此建议在

端对端通信中使用算法 1. 

3.3    LGVF导引律

ψ̇u

p∗u = [x∗u,y
∗
u]T r = pu− p∗u = [xr,yr]T

p∗u

本文使用 Frew等 [35] 提出的 LGVF控制器来

产生期望的偏航角速率 ，从而驱动无人机飞到

最佳中继位置 . 令
表示无人机当前位置相对于 的相对位置向量，

重写无人机的运动模型如下：


ẋr = vu cosψu− ẋ∗u = vr cosη
ẏr = vu sinψu− ẏ∗u = vr sinη
ψ̇u = ωu = η̇/kη(ψu)

（32）

vr = ∥ṙ∥ η kη(ψu)式中： 是相对速度； 是相对航向角；

是一个增益，可计算如下：

v2
r = v2

u+ ẋ∗2u + ẏ∗2u −2vu(ẋ∗u cosψu+ ẏ∗u sinψu) （33）

η = arctan
(

ẏr
ẋr

)
= arctan

(
vu sinψu− ẏ∗u
vu cosψu− ẋ∗u

)
（34）

kη(ψu) =
v2
u− vu(ẋ∗u cosψu+ ẏ∗u sinψu)

v2
r

（35）

ψ̇u指令参数 通过最小化李亚普诺夫函数得到：

l(r) = (∥r∥2− r2
d)2 （36）

f (r)

rd

制导矢量场函数 可以被用来驱使无人机

以半径 飞行在期望的轨迹：

f (r) =
 ẋd
ẏd

 = −v0

r(r2+ r2
d)

[
(r2− r2

d) 2rrd
−2rrd (r2− r2

d)

]  xr
yr


（37）

(ẋd, ẏd)

r = ∥r∥ f (r)

l(r)

式中： 表示在相对坐标中期望的速度矢量；

. 结合制导矢量场函数 和李亚普诺夫函

数 得到：

l̇ =
−4v0r(r2− r2

d)2

r2+ r2
d

（38）

ηd

η̇d

期望的相对航向角 和相对航向角变化率

可以被计算为：

ηd = arctan

yr · (r2− r2
d)− xr ·2rrd

xr · (r2− r2
d)+ yr ·2rrd

 （39）

 

表 2    支持多节点通信无人机在线自主运动控制算法伪代码

Table 2    Pseudocode  of  UAV  online  autonomous  motion  control
algorithm supporting multi-node inter communication

Algorithm of UAV online autonomous motion control for multi-node
communication (Algorithm 2)

1 p∗u,t0 = p0,ψu,t0Init: 

2 tk = t1 t2 tKfor  , ,···, 

3 P= {pi} i=
1 2 N tk+1

Use  the  Kalman  Filter  to  predict  node  positions  (
, ,···, ) at time   based on noise observations

4 µi
σ2

i i=1 2 N
[tk−1, tk)

Use  the  GP  algorithm to  estimate  the  channel  characteristics, 
and  , , ,···, ,  of  each  node  based  on  the  noise
observations of the received signal strength during time 
using Eqs. (23) and (24)

5 S p̂i ,p′u(β) p′u(β)=
pu+ [Rcosβ,Rsinβ]T 0 ⩽β<2π ni ∈M

p̂i

Predict  the  received  signal  strength    at  position 
，   from  each  node    at

position   using Eq. , then use a line search method to solve the
problem  in  Eq.  (30).  Next,  determine  the  target  position  of  the
following time step using Eq. (31)

6 p∗u [tk , tk+1)UAV flies toward   during time interval 

7 End for

 

Relay UAV

Airborne agent

图 4    多节点通信示意图

Fig.4    Illustration of multi-node communication
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η̇d = 4v0
rdr2

(r2+ r2
d)2 （40）

ηd η̇d ψ̇u

采用航向跟踪控制器 (Heading tracker controller,
HTC)来调节无人机在制导矢量场中的位置，结合

和 可求解出航向角变化率 ：

ψ̇u = −K ⟨η−ηd⟩+
η̇d

kη(ψu)
（41）

K −π < ⟨η−ηd⟩ ⩽ π式中： 是一个增益； 为无人机运动

约束，则控制指令为：∣∣∣ψ̇c
∣∣∣ =max(ωu,max,

∣∣∣ψ̇u
∣∣∣) （42）

 

4    仿真结果与讨论

本节通过仿真实验来验证所提中继无人机在

线自主运动控制方法的可行性和有效性，仿真环

境为 Matlab R2023b. 实验中，无人机是固定翼，存

在运动学约束. 智能体的运动服从平滑转弯模型[36].
无人机使用第 1.3节中所述的 Kalman滤波算法估

计智能体节点的未来位置信息. 同时，无人机事先

也不知道无线信道参数，但是根据第 2.2节中给出

的基于高斯过程学习和在线数据测量的信道估计

模型进行估计.
由于 Dixon[12] 和 Chamseddine[23] 的方法不能应

用于具有运动节点和未知 AoA信息的中继场景，

因此对本文所提出的算法以及其他两种方法进行

了比较：（1）使用基于距离信道模型的方法进行最

优中继位置的搜索，方法中的其他部分采用本文

所提出的工作； （2）使用 Malmirchegini和 Mostofi
提出的基于最大似然估计 [37] (Maximum likelihood
estimation, MLE)的不同信道估计算法来代替本文

工作中的基于高斯过程学习的信道估计部分，后

续记为“基于最大似然估计的方法”. 

4.1    静止端对端通信

实验一，使用中继无人机在两个静止的端对

端通信的节点 (如两架四旋翼无人机)之间进行中

继，无人机飞行速度 40 m·s−1，最大横滚角 40°，期
望的绕飞半径为 200 m，无人机与智能体节点之间

的信道参数如表 3所示，无人机与智能体节点初

始时刻的位置如表 4所示，无人机事先不知道这

些信道参数，通过 2.2节的 GP算法进行估计，然后

基于表 1中的算法 1搜索并飞往最优中继位置点，

基于不同方法的飞行轨迹如图 5所示，对应的通

信性能指标变化趋势如图 6所示.
图 5中三个方形点为无人机和智能体的初始

位置，其中黑色点为无人机，蓝色点为智能体，三

种不同颜色的曲线路径为基于不同方法获得的无

人机中继飞行轨迹，其中蓝色为本文方法对应的

飞行轨迹，红色为基于最大似然估计的方法对应

的飞行轨迹，绿色为基于距离模型的方法对应的

 

表 3    信道参数 (静止端对端通信)

Table 3    Channel parameters (stationary end-to-end communication)

Item Transmission power/ mW Channel gain Path loss factor

Agent node 1 200 100 2.8

Agent node 2 100 100 3.0

 

表 4    无人机与智能体节点的初始位置

Table 4    Initial positions of UAV and agent nodes

Item X coordinate/m Y coordinate/m

Agent node 1 410 2276

Agent node 2 7964 2276

Relay UAV 3195 6704
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图 5    不同方法下无人机中继飞行路径对比 (静止端对端通信)

Fig.5      Comparison  of  relay  UAV flight  paths  under  different  methods
(stationary end-to-end communication)
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图 6    不同方法下网络性能对比 (静止端对端通信)

Fig.6      Comparison  of  network  performance  under  different  methods
(stationary end-to-end communication)
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飞行轨迹. 本文方法、最大似然估计方法、基于距

离模型的方法得到的最终中继位置点分别为

(5023, 2276)、 (4891, 2276)、 (4190, 2276)，单位是 m，

可以发现，前两种方法搜索得到的最优中继位置

接近，而基于距离信道模型方法的无人机绕飞中

心位置与两者偏差较远.
实验中根据 3.1节中的式 (25)计算每个时刻

中继网络的通信性能，不同方法下获得的网络通

信性能如图 6所示，其中，蓝色实线为本文方法实

现的网络性能，红色实线为最大似然估计方法实

现的网络性能，绿色实线则为基于距离信道模型

的方法，可以发现，不同中继方法实现的网络通信

性能曲线均出现振荡，这是因为固定翼无人机无

法在最优中继位置点悬停，而只能围绕最优中继

位置点盘旋飞行.
比较图 5和图 6可以发现，本文所提方法实现

的通信网络性能最优，且性能稳定；基于最大似然

估计的方法实现了与本文所提方法接近的通信网

络性能，但其均值略低于本文方法，且性能曲线的

振荡比本文方法要大，说明基于最大似然估计方

法对未知信道参数进行估计的效果不如本文所提

基于高斯过程的学习方法；而基于距离信道模型

的方法实现了最差的通信网络性能，这是因为仅

考虑地理范围而忽略环境因素的距离信道模型过

于简化，导致实现的中继网络性能比较差. 

4.2    静止多节点通信

实验二，任务区域内有 5个静止空中智能体，

3.2节表 2中的算法 2被用来控制无人机从当前中

继位置飞向最优中继位置. 5个智能体的位置分别

为 (1500, 1700)、 (3500, 8000)、 (2400, 5600)、 (8000,
4000)、(6000, 3000)，单位是 m，如图 7中蓝色方形

点所示，每个智能体节点的发射功率由 Matlab的

随机函数在 100～250 mW范围内随机生成，中继

无人机与各个智能体节点之间的信道增益由Matlab
的随机函数在 100～200范围内随机产生，每条信

道的路径衰减因子由 Matlab的随机函数在 2.0～
3.2范围内随机生成. 中继无人机初始位置为 (3195,
6704)，如图 7中黑色方形点所示，其他仿真参数

同 4.1节的实验一.
不同中继方法下的无人机中继飞行轨迹如图 7

所示，其中蓝色为本文方法，红色为最大似然估计

方法，绿色为基于距离信道模型的方法. 本文方法

搜索到的最优中继位置点为 (5946, 4332)，基于最

大似然估计方法的绕飞中心位置为 (5640, 4571)，
可以看出二者接近，而基于距离信道模型方法的

绕飞中心位置为 (4285, 4463)，与前两种方法的绕

飞位置偏差较远.
实验中根据 3.2节中的式 (28)计算每个时刻

中继网络的通信性能，不同方法下获得的网络通

信性能如图 8所示，其中蓝色实线为本文方法实

现的通信性能变化曲线，红色实线表示基于最大

似然估计的方法获得的通信性能变化曲线，绿色

实线表示基于距离模型的方法实现的通信性能变

化曲线.
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图 8    不同方法下网络性能对比 (静止多节点通信)
Fig.8      Comparison  of  network  performance  under  different  methods
(stationary multi-node communication)
 

从图 8可以看出，本文提出的算法得到的通信

性能最优，且性能稳定；基于最大似然估计方法实

现的通信性能略低于本文算法，说明利用最大似

然估计方法对未知信道进行估计的效果不如本文

算法好；而基于距离信道模型的方法获得的通信

性能处于三者中最低的位置，中继通信效果最差.
实验一和实验二的对比仿真结果，验证了本
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Fig.7      Comparison  of  relay  UAV flight  paths  under  different  methods
(stationary multi-node communication)

· 1718 · 工程科学学报，第 47 卷，第 8 期



文方法在支持空中静止智能体通信的可行性和优

越性，下面接着讨论本文算法在支持空中运动智

能体通信下的实验结果以及跟其他方法进行比较

的实际表现. 

4.3    运动端对端通信

实验三，使用中继无人机在两个运动的端对

端通信的节点之间进行中继，无人机与智能体节

点之间的信道参数如表 5所示，无人机事先不知

道这些信道参数，两个智能体的速度为 10 m·s−1，
其他仿真参数同 4.1节的实验一，基于不同中继方

法的飞行轨迹如图 9所示，对应的网络通信性能

指标变化趋势如图 10所示.
 
 

表 5    信道参数 (运动端对端通信)

Table 5    Channel parameters (mobile end-to-end communication)

Item Transmission power/mW Channel gain Path loss factor

Agnet 1 100 200 2.8

Agent 2 100 150 3.2
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Fig.9      Comparison  of  relay  UAV flight  paths  under  different  methods
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图 9中，不同颜色的方形点为无人机和智能体

的起点，其中黑色点为无人机起点，蓝色点为智能

体起点 . 图 9中两条蓝色曲线路径为两个智能体

的运动轨迹，其他四种不同颜色的曲线路径为基

于不同方法获得的无人机中继飞行轨迹，其中红

色为本文方法对应的飞行轨迹，青色为基于最大

似然估计方法对应的中继飞行轨迹，绿色则为基

于理论最佳方法 (假设无人机事先已知与各个智

能体节点的信道参数，且为了方便观察和分析，不

至于跟前两种方法的中继飞行轨迹混合，给出的

是最佳中继位置点集合)获得的最优中继位置点

集合，黄色为基于距离信道模型方法获得的最优

中继位置点集合 (此处同样为了不与最前面两种

方法的中继飞行轨迹混合，给出的也是最优中继

位置点集合).
从图 9容易观察出，本文方法对应的无人机中

继飞行轨迹能够收敛于理论最佳中继位置点集

合，并且能够跟随理论最佳中继位置点的变化而

改变飞行轨迹，实现稳定跟踪，说明本文提出的中

继无人机运动控制方法能够有效地实现对最优中

继位置的实时搜索并驱使无人机对最优中继位置

进行稳定跟踪 . 而基于最大似然估计方法的无人

机中继飞行轨迹也能逐渐收敛于理论最佳中继位

置点集合，但是其距离理论最佳中继位置的偏差

比本文方法稍大，跟踪的稳定性和精确度不如本

文算法，说明本文所提基于高斯过程学习和在线

数据测量的信道估计算法，相比基于最大似然估

计的算法，对无人机和智能体节点之间的信道参

数进行估计的效果更好 . 而基于距离信道模型方

法的无人机搜索到的最优中继位置与理论最佳中

继位置始终存在较大的偏差.
图 10给出了不同方法实现的无人机中继飞行

轨迹对应的网络通信性能指标变化曲线，可以看

出，本文方法实现的通信网络性能最接近理论最

佳网络性能，且波动较小；而基于最大似然估计方

法实现的通信性能也能趋近并收敛于最优通信性

能理论值附近，但其波动较大，收敛效果及稳定性

不如本文方法；基于距离信道模型的方法实现的

网络性能始终处于三者中最低的位置，中继通信

效果最差. 

4.4    运动多节点通信

实验四，考虑中继支持多运动空中智能体通

信情形，智能体数量为 6，运动路径在满足平滑转

 

−72

−74

−76

−78

−80

−82

−84

−86

−88

−90
0 100 200 300

Time/s

400 500 600 700 800

N
et

w
o
rk

 p
er

fo
rm

an
ce

/d
B

m

Relay of theoretical optimal

Relay based on MLE

Relay based on GP and line search

Relay based on distance model

图 10    不同方法下网络性能对比 (运动端对端通信)

Fig.10      Comparison  of  network  performance  under  different  methods
(mobile end-to-end communication)
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弯模型 [34] 下随机给出，智能体速度均为 10 m·s−1，
每个智能体节点的发射功率由 Matlab的随机函数

在 100～250 mW范围内随机生成，中继无人机与

各个智能体节点之间的信道增益由 Matlab的随机

函数在 100～200范围内随机产生，每条信道的路

径衰减因子由 Matlab的随机函数在 2.0～3.6范围

内随机生成，其他仿真参数同 4.1节的实验一，仿

真结果如图 11和图 12所示.
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Fig.11    Comparison of relay UAV flight paths under different methods
(mobile multi-node communication)
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图 12    不同方法下网络性能对比 (运动多节点通信)
Fig.12      Comparison  of  network  performance  under  different  methods
(mobile multi-node communication)
 

图 11中，不同颜色的方形点为无人机和智能

体的起点，其中黑色点为无人机起点，6个蓝色点

为智能体起点 . 图 11中 6条蓝色曲线路径为智能

体的运动轨迹，其他四种不同颜色的曲线路径为

基于不同方法获得的无人机中继飞行轨迹，具体

含义同 4.3节实验三 . 图 12给出了不同方法实现

的无人机中继飞行轨迹对应的网络通信性能指标

变化曲线 . 对比图 11和图 12，不难得出与实验三

类似的结论，即本文提出的中继运动控制算法能

够驱使无人机跟踪最优中继位置点的变化，有效

提升网络的通信性能，同时本文提出的基于高斯

过程学习和在线数据测量的信道估计算法，效果

好于基于最大似然估计的算法. 值得注意的是，本

次实验图 12中网络性能曲线 (红色和青色两条曲

线 )，相比 4.3节实验三图 10中网络对应性能曲

线，曲线的波动较小，这是因为多节点通信相比端

对端通信，网络性能目标函数 (对比式 (25)和式

(28))被平均的结果. 

5    结论

本文通过联合考虑未知射频 (RF)信道参数、

未知多智能体移动性以及接收信号的不可用到达

角 (AoA)信息，研究了使用无人机作为中继支持

空中多智能体通信的问题 . 提出一种基于高斯过

程学习和在线数据测量的估计算法，用于估计无

人机与各个智能体节点之间的无线信道参数，仿

真实验结果表明，该算法的效果要好于基于最大

似然估计的信道估计算法 . 面向最优中继位置搜

索问题，考虑了端对端通信和多节点通信两种情

形，针对前者，提出一种简单的线搜索算法；针对

后者，提出一种通用的基于梯度的搜索算法. 两种

算法都只需要一维搜索. 对比仿真实验表明，本文

所提中继无人机运动控制方法能有效支持空中运

动智能体的通信，实现良好的通信性能，且无需

AoA信息及无线信道参数.
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