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ABSTRACT The transition from traditional fossil fuels to the widespread use of hydrogen energy marks a critical phase in energy
evolution. Hydrogen/methane mixtures, serving as crucial carriers of hydrogen energy, play a key role in this process. However, the high
risk of spontaneous ignition during high-pressure hydrogen leakage poses a significant safety challenge. Incorporating small amounts of
methane into hydrogen can reduce this tendency, thereby enhancing the safety of high-pressure storage and transportation. Spontaneous
ignition is triggered by abrupt localized temperature rises caused by shock waves during leakage; these shock waves are fundamental in

determining the ignition characteristics of hydrogen/methane mixtures. Methane blending significantly changes shockwave behavior,
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affecting their propagation, and the resulting temperature and pressure changes influence spontaneous ignition; however, the underlying
mechanisms of these effects remain unclear. This paper focuses on the evolution and characteristics of shock waves in high-pressure
hydrogen/methane mixture leakage using an improved experimental system for spontaneous ignition research. Experimental results
indicate that upon bursting disc rupture, a leading shock wave forms in the discharge tube, and as the shock wave propagates, the
distance between the leading shock wave and the main jet of the hydrogen/methane mixture gradually increases. Simultaneously, the
shape discontinuity between the circular rupture and the rectangular discharge tube creates reflected shock waves at the corners,
developing into complex multidimensional shock waves reflected within the discharge tube. Leakage pressure and methane blending
ratio significantly impact shock wave characteristics. Higher leakage pressures increase shock wave pressure and propagation velocity,
whereas greater methane blending ratios reduce them. Using shock tube flow theory and the physical property database of National
Institute of Standards and Technology, a calculation model was developed to predict shock wave parameters during hydrogen/methane
leaks. A comparative analysis with literature and experimental data confirmed the applicability of the optimized calculation model for
shock wave characteristic parameters in high-pressure hydrogen/methane mixture discharge scenarios. Spontaneous ignition reactions
within the rectangular tube influence internal pressure dynamics. When burst pressure is below the critical threshold for ignition, during
the leakage process of high-pressure H,/CH, mixture, the pressure at sensor P2 exceeds that at P3 during leakage. Conversely, when the
pressure is far above this threshold, spontaneous ignition occurs within the rectangular tube and develops into intense combustion near
P3, subsequently elevating the pressure at P3, manifesting as P3 > P2. At pressures slightly above the critical threshold, the pressure
relationship between P2 and P3 depends on the methane ratio. These findings provide a theoretical foundation for understanding
spontaneous ignition phenomena during hydrogen/methane leakage and serve as a reference for future experimental designs.

KEY WORDS hydrogen/methane mixture; high-pressure leakage; shock waves; spontaneous ignition; theoretical calculation
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Fig.1 Schematic diagram of the experimental system
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Table 1 Experimental system configuration

No. Components No. Components
1 Vacuum pump 2 Low frequency pressure sensor
3 Oil bath heating layer 4 Temperature sensor
5 High-pressure gas tank 6 Burst disc
7 Burst disc jacket 8 High frequency pressure sensor
9 Schlieren light 10 Release tube
11 Sapphire window 12 Schlieren reflector
13 Quartz glass window 14 Visual protective box
15 Muffler 16 Gas valve
17 Gas cylinder 18 Control chassis
19 Computer 20 High-speed camera
21 Gas booster pump 22 Experimental platform bracket
23 High-pressure pneumatic solenoid valve 24 High-pressure pipeline
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Table 2 Experimental conditions

No. CH4. Design rupture Actual rupture No. CH4' Design rupture Actual rupture
concentration/% pressure/MPa pressure/MPa concentration/% pressure/MPa pressure/MPa
1 5 5 5.28 13 10 17 17.98
2 5 7 7.31 14 15 11 10.97
3 5 9 9.93 15 15 13 12.67
4 5 11 11.38 16 15 15 14.71
5 5 13 13.85 17 15 17 17.23
6 5 15 1597 18 15 19 18.60
7 10 7 7.66 19 20 15 14.67
8 10 9 9.79 20 20 19 19.13
9 10 11 10.32 21 20 21 21.19
10 10 11 11.41 22 20 23 22.34
11 10 13 13.54 23 20 25 25.61
12 10 15 15.86
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