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ABSTRACT 38CrMoAlA steel is widely used in critical components, such as blower drive shafts of aircraft engines, because of its
remarkable mechanical properties and surface hardening potential. However, its performance in harsh marine environments,
characterized by high temperatures, humidity, and salt spray, remains a notable concern. In such environments, the steel is highly
susceptible to severe corrosion, which can undermine its structural integrity and operational reliability. This study systematically
investigates the corrosion behavior and corrosion-induced mechanical degradation of 38CrMoAIA steel under simulated service
conditions that imitate the extreme environmental exposure of an aircraft-engine blower drive shaft operating in marine settings. To
replicate the harsh conditions, a multicycle accelerated corrosion test is designed, consisting of alternating exposure to wet heat and salt
spray across a series of cycles. In particular, specimens were subjected to 7 d of wet heat followed by 4 d of neutral salt spray and then 3 d

of acidic salt spray. A variety of evaluation methods were employed for the assessment of material degradation, including comparison of
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macroscopic surface morphologies at different stages of corrosion cycles, weight loss measurements to calculate corrosion rates, and
mechanical testing to determine the effect of corrosion on tensile strength, fatigue life, and fracture toughness at room temperature.
Scanning electron microscopy (SEM) was employed to gain insights into microstructural changes associated with corrosion products and
fracture surfaces. The examination results revealed that corrosion pits induced by salt spray and wet heat exposure resulted in notable
alterations at the microstructural level. The presence of corrosion pits not only contributed to localized material degradation but also
facilitated crack initiation and propagation. Energy-dispersive spectroscopy was performed to analyze the elemental composition of the
corrosion products, helping further elucidate the chemical mechanisms underlying the corrosion process. A laser confocal microscope
was used to quantify the depth and distribution of corrosion pits, providing detailed data on the extent of localized corrosion damage.
The results of this study revealed significant corrosion damage to 38CrMoAlA steel after exposure to accelerated wet heat and salt spray
cycles. Corrosion pits were notably deep, particularly after the third test cycle, with the maximum pit depth measured to be ~ 506 um.
After completing five cycles, the corrosion rate reached a steady state at ~ 1.47 mm-a™', indicating that corrosion occurred slowly as
corrosion products accumulated on the steel surface. Despite this stabilization in corrosion rate, the mechanical properties of the steel
showed severe degradation. Notably, the tensile strength decreased by 11%, the yield strength by 64%, the elongation at break by 12%,
and the reduction of area by 30%. The mechanical degradation observed in this study can be primarily attributed to the stress
concentration effects caused by corrosion pits, which notably reduced the effective load-bearing area of the steel. Moreover, corrosion
pits served as initiation sites for cracks that propagated during loading, resulting in premature failure of the material. SEM imaging of the
fracture surfaces revealed numerous intergranular cracks surrounding corrosion pits, with these cracks rapidly expanding under loading
conditions. This progression of crack growth, combined with the loss of load-bearing capacity due to pitting, severely impaired the steel’s
ability to withstand cyclic loading, further expediting the failure of the material. The findings of this study provide a comprehensive
understanding of the corrosion mechanisms and associated mechanical degradation of 38CrMoAIA steel under marine environmental
conditions. The observed deterioration underscores the importance of developing advanced protective strategies to (a) mitigate the effects
of corrosion and (b) extend the operational life of critical components such as aircraft-engine blower drive shafts. The data from this
investigation offer valuable insights that can inform future material selection and development of more effective protective coatings and
corrosion-resistant treatments. Ultimately, these findings contribute to ensuring the long-term durability and reliability of aircraft
components exposed to harsh and corrosive marine environments, enhancing their performance and safety in real-world applications.

KEY WORDS 38CrMoAlA steel; hot and humid; acidic salt spray; corrosion; mechanical properties
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Fig.1 38CrMoAIA mechanical specimens: (a) tensile specimen; (b) high-frequency axial fatigue specimen (unit: mm)
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Fig.2 Macroscopic morphology of 38CrMoAIA after different test cycles: (a) before the experiment; (b) after 1 cycle; (c) after 3 cycles; (d) after 5 cycles
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Macroscopic morphology of the 38CrMoAIA tensile specimen
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