IERZEFR

Chinese Journal of Engineering

R THEY E RF A B B TR

G GARE B INE B FAZ k2

Physiological, biochemical, and molecular mechanisms of cadmium enrichment in hyperaccumulator plants
YUAN Qiaoling, CHEN Yinping, LI Qian, SUN Yong, CAO Bo, LU Yuzhi, ZHANG Xiaolan

FIHASL:

FIGFY, BRI, 2, FNDE, B, A, skt RBVEY R AR A AR Sy LRI AR TR R,
2025, 47(8): 1753-1762. doi: 10.13374/j.issn2095-9389.2024.10.24.001

YUAN Qiaoling, CHEN Yinping, LI Qian, SUN Yong, CAO Bo, LU Yuzhi, ZHANG Xiaolan. Physiological, biochemical, and

molecular mechanisms of cadmium enrichment in hyperaccumulator plants[J]. Chinese Journal of Engineering, 2025, 47(8): 1753—

1762. doi: 10.13374/].issn2095-9389.2024.10.24.001

TELR R BE View online: https:/doi.org/10.13374/j.issn2095-9389.2024.10.24.001

LR BRI HoAh S EE

Articles you may be interested in

SRR DX e T T SRl AR A o A
Analysis of heavy metal contamination in the soil and enrichment capabilities of terrestrial plants around a typical vanadium smelter

area

TARERRF2AR. 2020, 42(3): 302 hitps://doi.org/10.13374/j.issn2095-9389.2019.04.23.001

BT HGIEY OLACT S (5173 1 1 285 A N H- SR A H e 4 B
Physiological curve extraction of the human ear based on the improved YOLACT
TRERlF2E 4. 2022, 44(8): 1386  https://doi.org/10.13374/j.issn2095-9389.2021.01.11.005

SBA—15 15 B8 41 Fekr i AL il i 5%

Study of the mechanism of removing ultrafine particles using SBA-15
TRERF2A4. 2020, 42(3): 313 https://doi.org/10.13374/1.issn12095-9389.2019.04.01.004

IOL 3P X A P A ) e ML 52 i ) BB L

Effect of stress waveform on the rock blasting crack propagation mechanism using numerical simulation
TRERR 22, 2022, 44(12): 2057  https://doi.org/10.13374/j.issn2095-9389.2021.04.14.004

Eiea ERREE et SRy ¢ SR i

Research progress in cleaning and efficient remediation of heavy, toxic, lead—contaminated soil

TAERRF2AR. 2022, 44(2): 289 hitps://doi.org/10.13374/.issn2095-9389.2021.04.08.002
ANIR) o3-S R T PR I AU A B S A Ay B 2 LB AR R

Study of the intercalation mechanisms of surfactants with different molecular structures on mildly oxidized graphite

TRERLEEEHR. 2020, 42(1): 84 https://doi.org/10.13374/j.issn2095-9389.2019.06.03.001


http://cje.ustb.edu.cn/
http://cje.ustb.edu.cn/
http://cje.ustb.edu.cn//article/doi/10.13374/j.issn2095-9389.2024.10.24.001
http://cje.ustb.edu.cn//article/doi/10.13374/j.issn2095-9389.2019.04.23.001
http://cje.ustb.edu.cn//article/doi/10.13374/j.issn2095-9389.2021.01.11.005
http://cje.ustb.edu.cn//article/doi/10.13374/j.issn2095-9389.2019.04.01.004
http://cje.ustb.edu.cn//article/doi/10.13374/j.issn2095-9389.2021.04.14.004
http://cje.ustb.edu.cn//article/doi/10.13374/j.issn2095-9389.2021.04.08.002
http://cje.ustb.edu.cn//article/doi/10.13374/j.issn2095-9389.2019.06.03.001

T AR 2R, 5 47 %, 45 8 W: 1753-1762, 2025 4F- 8 A
Chinese Journal of Engineering, Vol. 47, No. 8: 1753—1762, August 2025
https://doi.org/10.13374/j.issn2095-9389.2024.10.24.001; http://cje.ustb.edu.cn

R PUE Y E AR5 09 A2 B A AL e 1 HL

FI5AD | FRARFEDE A 4ED 3N B @ b AR D g 2?

1) Z A R 8 5 TH BUCT R4 B, 2 730070 2) [ 9K B I3 350 7T Jie MG PR 77 9 1 A S 06 3, 220 730070
BRI {5 /E 4, E-mail: yinpch@mail.lzjtu.cn

% E HLEW(CHREHREYRIT A A K KT, IF B eSS B #EA N, 52 m A28 S8R, 251k
J7IZ V. B AT LA Rk B Cd V5 e R OE R A, SR — R A B A E, AL 46 AR b AR L At RE 2 A W
B B L R A3 0ih 45 Bl A& ) () A 0 S 45 BK (PCs) R HLER (OAs) ) LAZE & i 830 Cd 851, MM e K R b /b Cd i3
PEVERL. oAb, 2B YRR 1 238 5 B LS A DS iy B 22 Cd Jihia . A2 T 1 i RFEY) X 3 Cd iyl #%
iz AR SR DG AR 3 AE AR ML LA R o F AL, AR CR G ZE R TR R W EAEH . MY MRS E AR
I R IREEVE R o 3Rk R BR AR WU B RCR LA, iR S AR ) A i R SR R A i SRR A | (R EA PR A
FRLL BAE AR FR AL G 0 43 Wb 25 AL 22 [R1AH B s ), L R R 4pA  E AR K ARG AR B R BB E Cd 15 gk 1
WS ARALHT A 225 J5 n] AR B

KR Cd e, R BUEY); B A A AL A YRR A

TES X53

Physiological, biochemical, and molecular mechanisms of cadmium enrichment in

hyperaccumulator plants

YUAN Qiaoling'), CHEN Yinping”g, LI Qian”, SUN Yong”, CAO Bo", LU Yuzhi", ZHANG Xiaolan®

1) School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
2) Key Laboratory of Strategic Mineral Resources in the Upper Yellow River, Ministry of Natural Resources, Lanzhou 730070, China

BLCorresponding author, E-mail: yinpch@mail.lzjtu.cn

ABSTRACT With industrial development, the concentration of heavy metals such as cadmium (Cd), lead (Pb), mercury (Hg), and zinc
(Zn) in soil has increased significantly owing to human activities. This poses serious threats to plant growth and human health, garnering
widespread concern. Cd, in particular, exhibits high mobility in soil. It is predominantly absorbed by plant roots, transported through the
xylem, and accumulated in various organelles and sub-organelles within plants. As a non-essential element for plant growth, Cd is toxic
even at low concentrations, affecting plants at morphological, physiological, biochemical, and molecular levels. For example, Cd inhibits
seed germination, hinders root elongation, and reduces overall plant height. It enters the chloroplasts, compromising the integrity of the
chloroplast membrane system, which leads to decreased chlorophyll content, leaf yellowing, reduced photosynthesis, and, in severe
cases, plant death. At the cellular level, Cd induces oxidative stress, triggers lipid peroxidation, and generates excessive reactive oxygen
species (ROS). These processes damage cell membrane integrity, disrupt cellular functions, and cause oxidative damage. Through long-
term natural selection and environmental adaptation, some plants have developed a high tolerance to Cd, with their above-ground parts

capable of accumulating heavy metals at concentrations more than 10 times those of ordinary plants. These plants are known as Cd
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hyperaccumulators. Hyperaccumulators can thrive in soils contaminated with high Cd concentrations by employing various strategies to
mitigate Cd adverse effects. These include confining heavy metals within cell walls, isolating them in vacuoles, and secreting compounds
such as phytochelatins (PCs) and organic acids (OAs) to bind free Cd ions and form Cd-chelates, thereby reducing Cd mobility.
Specialized transporters facilitate the uptake of Cd ions and Cd-chelates from the soil into the plant, subsequently transporting them to
aerial parts and distributing them across organelles and sub-organelles to minimize Cd-induced tissue damage. To counteract oxidative
damage caused by ROS, plants produce enzymatic antioxidants (e.g., superoxide dismutase, catalase, peroxidase, glutathione reductase)
and non-enzymatic antioxidants (e.g., ascorbate, carotenoids, flavonoids, phenols), which help maintain cellular integrity and support
plant function. At the molecular level, hyperaccumulators mitigate Cd stress by enhancing the transcription of calcium ion signaling
pathways and hormone-stimulated transcription factors. This enhancement facilitates the expression of various genes across different
plant organs, helping to alleviate the stress and toxic effects of Cd. To provide a comprehensive understanding of the physiological,
biochemical, and molecular mechanisms underlying the absorption, transport, and accumulation of Cd in hyperaccumulator plants, this
paper systematically reviews the role of root exudate chelation, the influence of plant hormones, and the regulation of transporter gene
overexpression. Overexpressed genes not only enhance the absorption and transport of Cd but also influence plant biomass, chlorophyll
content, antioxidant mechanisms, organic acid synthesis, and root exudate production. These interconnected mechanisms work together
to sustain normal plant growth under Cd stress. This review can offer new insights and reference points for future research on

hyperaccumulator-based phytoremediation of Cd-contaminated soil.

KEY WORDS Cd stress; hyperaccumulators; phytoremediation; physiological and biochemical mechanisms; plant genes
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Fig.1 Key proteins and pathways involved in Cd uptake, transport, response, and accumulation in plants (red arrows indicate inhibition or promotion)
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Table 1 Expression of plant genes under cadmium stress
Gene family Gene Plants Function Reference
SpHMA 1 Transport of Cd (from chloroplast to cytoplasm)
SpHMA 2 Transport of Cd [32-33]
Sedum plumbizincicola
SpHMA 3 Transport of Cd (from cytoplasm to vacuole)
HMA Gene family SpHMA 7 Inhibition of Cd efflux [34]
GhHMAD 5 Gossypium hirsutum Increased tolerance to Cd [35]
HMA 4 Brassica juncea Transport of Cd ions to the xylem (roots) [36]
OjHMA 1,2,3,7 Ophiopogon japonicus Transport and absorption of cadmium [37]
AtABCC 1, 2,3 Transport of PC-Cd complex [38-39]
ABC Gene family Arabidopsis thaliana
AtABCC 6 Affects plant growth/development [40]
AtIRT 1 Arabidopsis thaliana Increased tolerance to Cd [41]
ZIP Gene family OsZIP 1,3 Arabidopsis thaliana Increase the accumulation of Cd [41]
NtZIP 7, 28 Nicotiana tabacum  Transport of Cd and redistribution of nutrient elements in leaves [42]
SpbZIP 60 Arabidopsis thaliana Increased tolerance to Cd [43]
bZIP Gene family o
SpbZIP Sedum plumbizincicola Response to Cd stress [43]
WRKY 58 Arabidopsis thaliana Increased tolerance to Cd (Negative regulation) [44—45]
SpWRKY 69 Sedum plumbizincicola Transport of Cd [46]
WRKY Gene family
GmWRKY 142 Glycine max Increased tolerance to Cd [47]
WRKY 75 Phytolacca acinosa Increased tolerance to Cd [48]
DEFL Gene family CAL 2 Arabidopsis thaliana Transport of Cd [31]
PLAC Gene family SaPCR 2 Sedum alfredii Expulsion of Cd [49]
SaHsfB 2a, 2e Response to Cd stress (root)
) SaHsfA la, 1d
Hsf Gene family  g,1sfB 1. SaHsfC 1b Sedum alfredii Response to Cd stress (stem) [50]
SaHsfB 4b Response to Cd stress (leaf)
SaMT 2 Sedum alfredii Increased tolerance to -Cd‘(Chelatlng metal and improving [51]
antioxidant system)
MT Gene family MT 1,2,3 Phytolacca americana Inereased t.olerance to Cd. (Ehm{nat} ne reacFl\{e oxysen [52-53]
species and enhancing antioxidant activity)
Lo Increased tolerance to Cd (increase the activity of
TaMT 3 Nicotiana tabacum superoxide dismutase (SOD) [54]
NRAMP Glycine max Transport of Cd ions [55]
AtNramp 4 Arabidopsis thaliana Inhibition of cadmium ion efflux from vacuoles [56]
NtNRAMP 2, 5, 6 Nicotiana tabacum Absorption and transport of cadmium [57-59]
NRAMP Gene family .
SaNRAMP 1, 3 Brassica juncea Transport and accumulation of Cd [60]
SpNramp 1, 2, 3 Spirodela polyrhiza Absorption of cadmium [61]
NRAMP 3, 5,6 Beta vulgaris var. cicla Transport of Cd [62]
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Fig.2 Plant gene activity and expression sites under cadmium stress
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