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Typical feature extraction and modeling of complex power dynamic load signals
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ABSTRACT The scale of clean energy and electric energy substitution is expanding with the rapid development of China's new power
system and the steady introduction of “dual carbon” strategic goals. Electric energy signals under the high proportion of renewable
energy access and high-power dynamic load applications lead to nonlinear random dynamic changes, often causing serious deviations in
electric energy measurements and affecting the fairness and rationality of electric energy trading. This study focuses on the energy
economy, in the context of problems in implementing the aforementioned national strategies. Furthermore, this study identifies scientific
problems, explores the important characteristics of dynamic loads that cause power metering deviations, and analyzes the local and
global features of complex power dynamic load signals to address the challenges in accurately characterizing the global features of high-
power dynamic load signals in existing research. Additionally, the method of constructing binary dynamic power testing signal models is
explored. First, a discrete mathematical model is constructed for complex dynamic load signals of electrified railways and electric arc
furnaces collected onsite. The important features of instantaneous voltage and current amplitudes are analyzed and extracted in the
waveform domain, which reflects the approximate stability of voltage signals, the fast random dynamic fluctuation characteristics of
current signals, the main characteristics of current amplitudes being an approximately Gaussian distribution, and decreasing
autocorrelation coefficients. Second, based on run-length sequence mapping, a binary run-length sequence of complex dynamic load
signals is constructed to analyze and extract important features, such as local and global run-length mode changes, modulation depth, and

impact strength of current amplitudes on electrified railways and electric arc furnaces in the run-length domain. Compared with the
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proposed time-, frequency-, and time-frequency domain feature analysis methods proposed, the method suggested in this study has
significant advantages in simultaneously extracting the local and global features of complex dynamic electrical-energy signals,
characterizing important features such as large-scale fluctuations (large fluctuations), rapid changes over time (fast time-varying), and
strong randomness. Finally, constraint conditions are constructed based on the typical characteristics of the run and waveform domains
of complex power dynamic load signals. Using feature modeling methods, a binary m-sequence dynamic energy-testing signal model
with specific parameters is constructed such that the testing signal reflects the typical features of the dynamic load signal and the most
significant factors affecting energy measurement errors and covers the maximum range of feature parameter changes. This can also allow
the simultaneous completion of the dynamic error testing of energy meters and the traceability of energy values. A dynamic error-testing
system is built for electric-energy measurements, and the dynamic error of the electric-energy meter is tested under binary dynamic
electric-energy-testing signal conditions. Experimental verification showed that the test signal reflected the typical characteristics of
dynamic loads under the influence of electric-energy measurement errors. The research content of this paper provides a theoretical basis

for the analysis of dynamic energy signal characteristics in complex scenarios, the construction of multifeature constraint models, and the

dynamic error testing of energy meters.

KEY WORDS new power system; electricity metering; smart meter; feature modeling; power dynamic load; run domain
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Fig.8 Binary random-run sequence of the electrified railway and electric arc furnace systems: (a) binary random-run sequence of electrified railway

system; (b) binary random-run sequence of electric arc furnace system

2.2 E?]TEEj]szlu\

A e R IR i AR B (E S A

it — A AL B 2% B 7 Bl 25 B e O A S

FRAE, AR SCHRETF DA L4 H A0 B T Ui A B e, 7 iR A
Jaf AT 67 T E U B R AR AT 5 S B ER B, E A



EOAE S ) S A O £ S SRR B L A -1737 -
FEAGAZS AR AR | 98 ] % 88 A A R e o 56 55 4R AT JE ik ()2 N7, N 1 A S e i R ABE 25 705 A R i 9 B 55

FRE (1) : SRR AE ST 5 SR
S 2% L T Bl 25 B A FEL UL 194 90 R A A AR T R
7 HL L W (E A BE AL 30 2528 A B, B R I

P R R PR /DN L AL I 7 T 2 PR i X (16)
FTEL 8 Jir 7 19 — ST RE AL A 3 8], AS SCH &2 2% e
JIEhAS T HL R I R AR S 0 o =2, Ik 2 R,

F2 HA A ORI

Table 2 Classification of complex power dynamic load-current run mode

Run mode Duration of run/s Number of continuous power frequency cycles in the run Amplitude fluctuation speed
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Long-term fluctuation >4 >200 Medium or slow speed
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Fig.9 Instantaneous current modulation depth characteristics of the electrified railway and electric arc furnace systems: (a) instantaneous current

modulation depth characteristic of the electrified railway system; (b) instantaneous current modulation depth characteristic of the electric arc furnace

system
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strength characteristics of the electrified railway system; (b) instantaneous current impact strength characteristics of the electric arc furnace system
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Table 3 Comparison of the advantages of load-signal characteristic analysis method in this study with existing methods

Analysis domain Characteristic parameter analysis Evaluation of feature analysis methods

Regarding the waveform characteristics of low-power loads
in local time
Only analyze the impact of harmonic characteristics on
energy metering
Time-frequency Harmonic/fundamental active power, Harmonic distortion coefficient, ~Characteristics of harmonic power variation and harmonic

Time domain Peak of waveform, rise time/rate/peak slope

Frequency domain Harmonic amplitude and phase characteristics

domain load harmonic factor current variation within a small time scale
Waveform domain Volatility, distribution, and distribution characteristics Global characteristics of rapliz?; slltude changes in small time
Run domain Run mode, modulation depth, and impact strength characteristics ~ Local and global features of rapid changes in small time scale
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Table 4 Equipment for dynamic error test of electric energy metering

Equipment Equipment model

Three-phase steady-state power

. Fluke 6100
source/standard electricity meter
Dynamic error testing device for HE5025
electric energy meter
oscilloscope Agilent DSO71048
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current test signal conditions
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