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摘    要    锂离子电池的荷电状态 (SOC)估计作为 BMS（Battery management system）的核心功能之一，其精确估计能够有效避

免电池出现过充过放问题，从而延长电池使用寿命. 针对等效电路模型和电化学模型的优缺点，本文建立了一种耦合模型，在

提高模型精度的同时 ，能保证很好地实时性 ，并实时反映出电池内部反应机理 . 在耦合模型的基础上 ，本文利用

LM（Levenberg–Marquardt）非线性最小二乘法对模型中的 22个参数进行了辨识；其次，基于耦合模型对卡尔曼滤波算法进行

了改进，将模型参数以及通过电化学模型计算出的开路电压曲线代替实验值，避免了采样误差和滞回特性的影响 . 经过

UDDS（Urban dynamometer driving schedule）、FUDS（Federal urban driving schedule）和 DST（Dynamic steering test）工况的仿真验

证，其平均绝对误差仅为 31.6、28.4和 24.7 mV. 在此基础上，设计了电池放电实验，在实验 DST电流工况下，EKF（Extended

Kalman filter）算法的提升最大，平均误差降低了 1%，SOC估计误差得到有效改善. 研究结果表明，虽然加入了电化学机理，但

并未增加过多估算运行时间，且具有较好的实时性，能够很好地实现在线估计锂电池 SOC.

关键词    锂电池耦合模型；电化学模型；卡尔曼滤波算法；荷电状态 (SOC)；非线性最小二乘法
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ABSTRACT    As one of the core functions of a battery management system (BMS), state-of-charge (SOC) estimation for lithium-ion

batteries  can  effectively  prevent  overcharging  and  overdischarging,  thereby  extending  battery  service  life.  Considering  the  respective

advantages and limitations of equivalent circuit and electrochemical models, this study begins with battery modeling and establishes a

new  coupling  model  by  deriving  the  electrochemical  mechanism  model  and  integrating  it  with  the  equivalent  circuit  model.  After

establishing  the  electrochemical  model,  the  differential  equations  of  this  complex  model  were  simplified  using  Padé  approximation,

converting  the  nonlinear  equations  into  a  more  tractable  polynomial  form.  This  approach  not  only  improves  model  accuracy  but  also

ensures good real-time performance while reflecting the internal reaction mechanisms of the battery. For parameter identification of the

coupling model,  the  Levenberg–Marquardt  (LM) nonlinear  least-squares  method was  employed due to  its  weak dependence on initial

value  settings.  This  method  was  used  to  identify  22  parameters  within  the  model.  Additionally,  the  Kalman  filtering  algorithm  was

improved based on the coupling model. The original equivalent circuit model was replaced with the coupling model, incorporating more

electrochemical  parameter  information  to  enhance  model  accuracy.  Furthermore,  the  open-circuit  voltage  (OCV)  of  the  battery  was 
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derived from the relationship between the Li+ concentration in  the electrochemical  model  and the open-circuit  voltages (OCVi)  of  the

positive  and  negative  electrodes.  With  accurately  identified  coupling  model  parameters  and  a  higher-fidelity  battery  model,  the  OCV

derived  from  experimental  data  was  replaced  with  the  model-based  OCV,  enhancing  the  Kalman  filter  algorithm’s  accuracy.  This

replacement  also  mitigated  the  impact  of  sampling errors  and hysteresis.  After  the  simulation  of  UDDS (Urban dynamometer  driving

schedule),  FUDS (Federal  urban  driving  schedule),  and  DST (Dynamic  steering  test)  conditions,  the  average  absolute  error  was  only

18.6,  28.4,  and  24.7  mV,  respectively.  Based  on  these  simulations,  a  battery  discharge  experiment  was  conducted  using  a  cylindrical

lithium-ion battery with a ternary lithium (NCM) positive electrode and a calibrated capacity of 2.5 A·h. A dynamic steering test (DST)

current  profile  was  applied,  with  each  32-min  cycle  discharging  approximately  0.5  A·h  (20% SOC),  ending  after  the  fifth  cycle.  The

model  parameters  identified  using  the  LM  method  were  input  into  the  model,  and  comparisons  were  made  using  the  traditional

FFRLS(Forgotten  factor  recursive  least  squares)  algorithm  with  the  equivalent  circuit  model.  Simultaneously,  SOC  estimation  was

performed  using  the  coupling  model  and  the  improved  Kalman  filter  algorithm,  and  the  estimated  SOC  values  were  compared  with

experimental results. Under DST conditions, the extended Kalman filter (EKF) algorithm showed the greatest improvement: the average

estimation error  was reduced by 1%,  significantly enhancing SOC estimation accuracy.  The result  demonstrates  that  the coupling and

electrochemical  models  developed  in  this  study  preserve  the  battery’s  electrochemical  characteristics.  Despite  incorporating  the

electrochemical  mechanism,  the  proposed  SOC  estimation  method  does  not  significantly  increase  runtime,  offers  strong  real-time

performance, and enables effective online SOC estimation for lithium-ion batteries.

KEY WORDS    lithium battery coupling model；electrochemical model；Kalman filter algorithm；state of charge (SOC)；nonlinear least

square method

纯电动汽车的动力源多以动力电池为主，电

池荷电状态 (SOC)估计是 BMS（Battery management
system）的核心功能之一，精确估计 SOC能够有效

避免电池出现过充过放问题，从而延长电池使用

寿命 [1−2]. 由于 SOC不能直接通过测量得到，且在

使用过程中受温度 [3−4]、放电倍率 [5−6] 和老化 [7] 等

影响导致内部状态时刻发生改变，所以 SOC的精

确估计有一定难度.
SOC估计依赖于精确的电池模型，而电池模

型主要有等效电路模型 [8−9]、电化学模型 [10−11] 和神

经网络模型 [12−13] 等 . 传统的等效电路模型精度较

高，原理简单，适合在线应用，但无法反映电池内

部的电化学机理信息. 电化学模型的精度最高，计

算量却较大，不易直接在线应用. 神经网络模型依

赖于大量的数据集和网络的训练效果，才能保证

预测精度.
当前的 SOC估计方法主要分为传统算法、基

于模型和基于数据驱动的方法等 . 传统方法已经

不适用于复杂的行驶道路环境，以及复杂工况下

对 SOC的精度需求. 所以当前 SOC估计主要是基

于卡尔曼滤波算法及其衍生算法所实现的，即在

卡尔曼滤波（KF，Kalman filter）算法的基础上逐渐

衍生出具有非线性能力的 EKF（Extended Kalman
filter） 、 UKF（Unscented  Kalman  filter） 和 AEKF
（Adaptive extended Kalman filter）等算法 [14−15]. 基于

卡尔曼滤波算法能够很好地避免初始值对后续估

计值的影响，同时有很好的鲁棒性和实时性，较好

地跟踪实际的 SOC动态变化 [16]. 但传统卡尔曼滤

波算法对开路电压（OCV）曲线的依赖性较大，会受

到测试时的电压误差而导致 SOC估计精度的下降[17].
基于此，本文主要从电池模型入手，通过对电

化学机理模型的推导，联合等效电路模型建立耦

合模型，并在此基础上，对传统的卡尔曼滤波算法

进行了改进，以进一步提高 SOC的估计精度.

 1    耦合模型的建立

 1.1    等效电路模型

等效电路模型中，以戴维南模型和二阶 RC
(Resistor-capacitor)模型应用较广泛 [18−19]. 其中 RC
环节主要是用来描述电池的极化效应，随着 RC环

节的增多，电池模型的精度则提高，但计算量也相

应增大，为此二阶 RC模型的计算量适中，且精度

更高，所以本文采用二阶 RC模型展开研究. 如图 1
所示，为二阶 RC模型的电路拓扑结构，OVC为电
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图 1    二阶 RC等效电路模型拓扑结构

Fig.1    Topology of the second-order RC equivalent circuit model
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路中的电源.
由端电压的输出方程和基尔霍夫定律可以得到：

Ut = Uoc−U1−U2− IR0

U̇1 = −
U1

R1C1
+

I
C1

U̇2 = −
U2

R2C2
+

I
C2

（1）

式中，R0 为欧姆内阻，R1 和 R2 为极化电阻，Ω；C1

和 C2 为极化电容，F；Ut 为端电压，Uoc 为开路电

压，U1 和 U2 分别为两个 RC网络的端电压，V；I 为
电流，A；

对式（1）进行拉普拉斯变换可以得到：

Y1(s) =
(

R1

1+R1C1s
+

R2

1+R2C2s
+R0

)
I(s) （2）

Y1(s) = Uoc(s)−Ut(s) （3）

整理后，可以得到二阶 RC模型传递函数形式

的输出方程：

G1(s) =
Y1(s)
I(s)

=
R1

1+R1C1s
+

R2

1+R2C2s
+R0 （4）

 1.2    电化学模型

电化学 P2D模型 [20] 是由 Doyle和 Newman共

同提出的一种伪二维模型，根据模型原理，内部结

构如图 2所示，表 1为电化学模型参数 . 它将电池

内部分成两个维度，一是考虑到锂离子在固相电

极内部的迁移过程（方向为 r），二是锂离子沿负极

到正极板极之间的迁移（方向为 x）；并将锂离子电

池内部结构分成了三个部分，分别是负极（x∈（0,

Ln），长度为 Ln）、隔膜（x∈（Ln, Ln+Lsep），长度为 Lsep）

和正极（x∈（Ln+Lsep, L），长度为 Lp）.
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图 2    电化学模型结构

Fig.2    Structure of the electrochemical model
 

 1.3    Pade逼近多项式的模型简化

在建立了电化学模型后，虽然已经得到了端

电压输出的表达形式，仍然需要将复杂的微分方

程进行简化处理，将电极 Li+浓度的求解、电解液

电势差的求解，反应电流密度 j(x, t)的求解线性

化，以满足对端电压的直接求解.
Pade逼近是一种多项式逼近方法，它能够将

复杂的非线性方程逼近成简单的多项式形式，因

为相比其他的近似简化方法在同阶逼近中有更高

的精度，因而被广泛应用[21].
Pade逼近的基本原理是先设定分子阶数 m，

分母阶数 n，可以得到如下 Pade逼近形式的多项

式 (5)：

fPade(x) =

m∑
j=0

P jx j

1+
n∑

k=0

Qk xk

=
P0+P1x+ · · ·+Pmxm

1+Q1x+Q2x+ · · ·+Qnxn

（5）

在 Pade逼近中，要满足原函数 f(x)和 Pade多

项式 fPade(x)在逼近点 x0=0时，保持各阶导数点的

数值始终相等：

f n(0) = f n
Pade(0) （6）

而 Pade逼近的原理就是利用泰勒公式将原函

数展开后，利用 n 阶导数点数值相等的特性，得到

若干个线性方程，再求解得到多项式 m 阶分子系

数 P0、P1、 ···、Pm，以及 n 阶分母系数 Q1、Q2、 ···、

· 2114 · 工程科学学报，第 47 卷，第 10 期



Qn，最终求解得到近似后的方程[22].

利用该方法，Pade逼近还可以求解成目标传

递函数的形式，将方程逼近成不同的 [m,n]阶传递

函数. 只需先将传递函数进行拉斯变换，再进行泰

勒公式展开以及 Pade逼近多项式的系数求解，最

终得到式 (7)形式：

GPade(s) =
P(s)
Q(s)

=
P0+P1s+ · · ·+Pmsm

1+Q1s+Q2s+ · · ·+Qnsn （7）

 1.4    电化学模型简化

利用上述方法，将正负电极处 Li+浓度和电流

之前的微分方程，Pade逼近选取 [2,3]阶，则得到

式（8）；其公式（8）～（20）中各符号含义可见表 1
中的释义.

Cs(x,r, s)
j(x, s)

= −

3
FRs
+

4Rs
11DsF

s+
R3
s

165D2
s F

s2

as

(
s+

3R2
s

55Ds
s2+

R4
s

3456D2
s

s3
) （8）

 

表 1    电化学模型参数

Table 1    Electrochemical model parameters

Model parameter Name Unit

A Collecting plate area m2

Lp Positive plate length μm

Ln Negative plate length μm

Lsep Diaphragm length μm

L Plate electrode length μm

F Faraday constant C∙mol–1

Rp Positive electrode particle radius μm

Rn Negative electrode particle radius μm

R Gas constant J∙mol–1∙K

T Temperature K

Ds,n Solid phase negative electrode Li+ diffusion coefficient m2∙s–1

Ds,p Solid phase positive electrode Li+ diffusion coefficient m2∙s–1

De Electrolyte Li+ diffusion coefficient m2∙s–1

k Reaction rate constant mol–0.5∙m2.5∙s–1

Rf Contact resistance Ω

K Effective Li+ conductivity of electrolyte s∙m–1

εs,p Pore volume of solid phase positive electrode m3∙m–3

εs,n Pore volume of solid phase negative electrode m3∙m–3

εe,p Porosity at the positive electrode electrolyte m3∙m–3

εe,n Porosity at the negative electrode electrolyte m3∙m–3

t0+ Particle transfer coefficient —

Cs,max,p Maximum Li+ concentration in the positive electrode mol∙m–3

Cs,max,n Maximum Li+ concentration in the negative electrode mol∙m–3

Cs0,p Initial Li+ concentration in the positive electrode mol∙m–3

Cs0,n Initial Li+ concentration in the negative electrode mol∙m–3

Ce,0 Initial Li+ concentration in the electrolyte mol∙m–3

Ce,p Concentration at the positive electrode electrolyte mol∙m–3

Ce,n Concentration at the negative electrode electrolyte mol∙m–3

as,p Positive electrode specific interfacial area —

as,n Negative electrode specific interfacial area —

α Positive and negative electrode transfer coefficient —
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同理，由于电解液 Li+浓度方程较为复杂，其中

参数量较多，故选取了 [m,n]=[1,2]阶 Pade逼近公

式结果，电解液 Li+浓度 Ce(x,s)与电流 I(s)的近似

传递函数结果如公式（9）所示. 在推导过程中已经

阐述了在电解液中由正负极处“进出”Li+路径不

同，导致正负极处的传递函数公式不一样.
Ce,p(x, s)

I(s)
=

−3(1− t0
+)(Lm,p+2Lp)2

FA(Lpεe,p(3Lm,p
2+10Lm,pLp+10L2

p)s+ (12Lm,p+24Lp)Deff
e

Ce,n(x, s)
I(s)

=
−3(1− t0

+)(Lm,n−2Ln）
2

FA(Lnεe,n
(
−3Lm,n2+10Lm,nLn−10L2

n
)

s+
(
12Lm,n−24Ln

)
Deff

e

（9）

Lm,p = 2Lsep+Ln−Lp

Lm,n = −2Lsep+Ln−Lp εe Deff
e

σ σeff

αa、αc

式中，Lm,p 和 Lm,n 为中间参数， ，

， 为电解液孔隙率， 为电

解液有效扩散数， 和 为电极的电导率和有效

电导率， 为正负极传导系数.

根据上述建模以及简化过程，可以得到如图 3
所示的建模原理及逻辑图. 由上述过程，经过一系

列推导的简化，最终可以建立得到电化学模型的

电压输出方程式 (10)：

Ut(s)
I(s)

=Up

(
Cs,p

Cs,max,p

)
−Un

(
Cs,n

Cs,max,n

)
− 1

2A

 Ln

keff
n
+

2Lp

keff
sep
+

Lp

keff
p

− 2RT (1− t0
+)2

Ce,0AF2 ×(
3(Lm,p+2Lp)2

Lpεe,p(3Lm，p2+10Lm，pLp+10Lp2)s+ (12Lm,p+24Lp)Deff
e
+

3(Lm,n−2Ln)2

Lnεe,n(3Lm,n2−10Lm,nLn+10Ln2)s− (12Lm,n−24Ln)Deff
e

)
−

RT
AF(αa+αc)

(
1

as,pi0,pLp
+

1
as,ni0,nLn

)
−R f （10）
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−
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图 3    电化学模型求解逻辑和建立端电压方程思路

Fig.3    Solution logic of the electrochemical model and the concept of establishing the terminal voltage equation
 

 1.5    耦合模型的建立

由电化学模型端电压输出方程，为了便于和

二阶 RC等效电路模型输出电压差的传递函数公

式进行转换，定义 Y2(s)，见式 (11). 并由于两个模

型的输出和输入都是一致的，只是参数和传递函

数方程的不同，所以可以建立如式 (12)和 (13)：

Y2 (s) = Uoc (s)−Ut (s) =
(
Up

(
Cs,p

Cs,max,p

)
−Un

(
Cs,p

Cs,max,n

))
−Ut (s) （11）

Y1(s)
I(s)

=
Y2(s)
I(s)

（12）

· 2116 · 工程科学学报，第 47 卷，第 10 期



R0+
R1

1+R1C1s
+

R2

1+R2C2s
=

1
2A

 Ln

κeffn
+

2Lsep

κeffsep
+

Lp

κeffp

+ 2RT (1− t0
+)2

Ce,0AF2 ×(
3(Lm,p+2Lp)2

Lpεe,p(3Lm,p2+10Lm,nLp+10Lp2)s+ (12Lm,p+24Lp)Deff
e
+

3(Lm,n−2Ln)2

Lnεe,n(3Lm,n2−10Lm,nLn+10Ln2)s− (12Lm,n−24Ln)Deff
e

)
+

RT
AF (αa+αc)

(
1

as,pi0,pLp
+

1
as,ni0，nLn

)
+R f （13）

i0、η

κeffsep κ
eff
p κeffn

式中， 为电流交换密度和电极过电势，分离出

常数项，将其等效为电池欧姆内阻 R0，其余项依次

对应，其中 、 和 分别为固相正极电解液导

电率、正极导电率和负极导电率，通过化简后可先

得到式 (14)～(20)的耦合模型时间参数 τ1 和 τ2：

R0 =
1

2A

 Ln

κeffn
+

2Lsep

κeffsep
+

Lp

κeffp

+ RT
AF(αa+αc)(

1
as,pi0,pLp

+
1

as,ni0,nLn

)
+Rf （14）

R1 =
2RT (1− t0

+)2

Ce,0AF2

3(Lm,p+2Lp）
2

(12Lm,p+24Lp)Deff
e

（15）

R2 =
2RT (1− t0

+)2

Ce,0AF2

3(Lm,n−2Ln)2

−(12Lm,n−24Ln）Deff
e

（16）

τ1 =
Lpεe,p(3Lm,p

2+10Lm,pLp+10Lp
2

(12Lm,p+24Lp)Deff
e

（17）

τ2 =
Lnεe,n(3Lm,n

2−10Lm,nLn+10Ln
2)

−(12Lm,n−24Ln)Deff
e

（18）

C1 = τ1/R1 C2 = τ2/R2由 ， ，可以求解出 C1 和 C2：

C1 =
Lpεe,pCe,0AF2(3Lm,p

2+10Lm,pLp+10Lp
2)

6RT (1− t0
+)2(Lm,p+2Lp)2

（19）

C2 =
Lnεe,nCe,0AF2(3Lm,n

2−10Lm,nLn+10Ln
2)

6RT (1− t0
+)2(Lm,n−2Ln)2

（20）

 2    耦合模型参数辨识

 2.1    LM(Levenberg–Marquardt)非线性最小二乘法

x0 µ

J f (x)

非线性最小二乘法被广泛应用在各工程领域

中，作为优化算法所使用，因为其原理相对比较简

单，容易实现，而且算法的收敛能力强，精度高. 在
求解非线性最小二乘法问题上，有牛顿法、高斯牛

顿法、梯度下降法、LM算法，其中 LM算法是基

于非线性最小二乘法其中的一种，相比于梯度下

降法、高斯牛顿算法等算法，不强烈依赖于初值的

设定 [23−24]. 首先初始化参数 和阻尼因子 ，计算

雅可比矩阵 和残差向量 . LM算法求解如图 4

所示.
 
 

Initial value: x0、μ

Compute ρ

Output: x
i

x
i
<xbest?

Solve min   ||e(x
k
)+J(x

k
)Δx

k
||2

 
2
1

x
k+1=xk+Δxk

 

μ=2μ μ=0.5μ

ρ>ε?

ρ>0.75? ρ<0.25?

Y

Y

Y Y

N

N

N

图 4    LM算法求解思路

Fig.4    LM algorithm solution
 

结合信赖域的思想，判断每次迭代过程中的

近似区域 ρ 是否在设定的阈值 ε 范围内，如果超出

设定值后则可以根据经验重新调节移动半径 ρ 的

值 . 当 ρ>ε，则进行下一次的迭代，并更新参数，当

得到的参数值满足设定的残差阈值，算法收敛同

时输出当前得到的最优参数.
 2.2    耦合模型参数辨识

设定 LM算法的收敛误差阈值为 10–3，参数移

动范围设置为 10–8，并设置最大迭代次数为 200次，

防止 LM算法进入死循环；与等效电路模型的参

数辨识过程类似 ，同样沿用 HPPC（Hybrid  pulse
power characterization）电流工况下的数据进行参数

辨识，最后在 MATLAB中编程实现辨识算法 . 文
献 [25]给出了锂离子电池电化学参数的有效范围

和真实值结果. 本文将 LM最小二乘算法参数辨识

出的结果与其进行对照，结果绘制成辨识对比表，
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如表 2所示；LM算法参数辨识的迭代过程如图 5 所示，各符号含义见表 1、表 2.
 
 

表 2    电池电化学参数辨识结果对比

Table 2    Comparison of identified electrochemical parameters of the batteries

Idenification
parameter Parameter scale Refer to the

actual values
Identification result
of the LM algorithm

Idenification
parameter Parameter scale Refer to the

actual values
Identification result
of the LM algorithm

K — — 5.7016 Ds,n — — 4.158×10–14

εs,p [0.2, 0.5] 0.297 0.41961 Ds,p [5×10–14, 1.5×10–13] 10–13 9.726×10–14

εs,n — 0.471 0.22434 De [10–11, 10–10] 7.5×10–11 7.597×10–11

εe,p — — 0.44542 Cs,max,p — 22860 17816

εe,n — — 0.35744 Cs,max,n — 26390 22741

t0+ [0.1, 0.5] 0.363 0.3721 Cs0,p [2000, 6500] 3900 4992.3

A — — 0.66024 Cs0,n [10–4, 3.5×10–4] 14870 12082

Rp [5×10–6, 10–5] 8×10–6 9.8573×10–6 Ce,0 [1800, 2200] 2000 2024

Rn [10–5, 1.6×10–5] 1.25×10–5 1.068×10–5 Lp [180×10–6, 197×10–6] 183×10–6 225.68×10–6

k [10–11, 3.5×10–10] 2×10–11 2.006×10–11 Ln [92×10–6, 125×10–6] 100×10–6 52.374×10–6

Rf — — 0.011196 Lsep [50×10–6, 66×10–6] 52×10–6 52.012×10–6
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图 5    LM算法参数辨识的迭代过程

Fig.5      Iterative  process  of  parameter  identification  using  the  LM
algorithm
 

通过对比辨识结果，可以很直观地看出利用

LM最小二乘算法辨识出的参数结果十分准确，在

算法多次迭代之后仍然能与参数的真实值保持一

致，并在合理的范围界限内，除去正负极极板长度

略超出了正常的参数范围，其余所有参数皆收敛

至真实值左右，与参数真实值相比误差极小. 该结

果表明:本文设计的参数辨识算法面对不同的数量

级的多参数辨识，LM算法也能够很好地应对，并

有极高的辨识精度 . 利用这些辨识好的电化学参

数，可以进一步输入至电池的耦合模型和电化学

模型中做进一步的仿真验证.
 2.3    模型精度验证

设定电流仿真工况为UDDS(Urban dynamometer
driving schedule)工况、FUDS (Federal urban driving
schedule) 工况、DST(Dynamic stress test)工况，几种

工况的曲线如图 6所示，并将上述辨识结果带入

到耦合模型中与实测电压进行对比 . 几种工况下

的辨识结果如图 7所示 ，误差对比如表 3所示 .
UDDS、FUDS和 DST几种电流工况下的平均绝对

误分别为 31.6、28.4和 24.7 mV.
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图 6    UDDS (a)、FUDS (b)、DST (c)三种电流工况下的仿真电流曲线

Fig.6    Current curve of simulated working under the UDDS (a); FUDS
(b), and DST (c) conditions
 

 3    改进卡尔曼滤波算法的 SOC估计

 3.1    改进的卡尔曼滤波算法

开路电压 OCV的全称是稳态开路电压，所以

在测试 OCV时，往往使用小电流（0.1C～1C的电

流倍率下）对电池进行充放电，以使电池处于稳态

中，并取充电放电下的 OCV平均值作为使用. 但在

这种小电流测试环节中，一方面存在传感器的采

样误差，另一方面电池可能并不是在完全的稳态
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的环境下，这都导致了 OCV的实际测量值有误差.
对于递推最小二乘法的参数辨识环节而言，

需要根据端电压和 OCV的差值来对参数进行预

估 . 对于卡尔曼滤波算法而言，SOC–OCV曲线关

系十分重要，在迭代过程中想要求解出端电压与

实际电压的误差时，需要利用观测方程输出当前

系统预测的端电压值，而观测方程中正包含了开

路电压 OCV，OCV求解则一般通过拟合的形式直

接代入函数求得，所以这种方法往往会因为 OCV
测试的不精确和拟合的误差造成 KF算法估计

SOC时的精度下降. 特别是对于 EKF算法而言，进

行泰勒展开的非线性的过程是利用 SOC–OCV曲

线关系所实现的，OCV不准确会导致 Jacobian矩

阵计算时有偏差，进而导致 SOC估计精度差[26].
所以，本文在原算法的基础上，一方面用耦合

模型代替原等效电路模型，用更多电化学参数信

息代入到原模型中进行更新，其模型的精度更高；

另一方面，用电化学模型中固相电极中的 Li+浓度

与正负电极开路电压 OCVi 的关系推导出电池的

OCV，在耦合模型参数精准、电池模型精度更高的

基础上，代替实验数据测量的 OCV，以此从两个方

面提升卡尔曼滤波算法的精度 . 其改进的 SOC估

计方法技术路线如图 8所示.
 3.2    SOC估计精度验证

利用本文改进的 SOC估计算法和传统卡尔曼

滤波算法在 HPPC工况下的 SOC的估计结果如

图 9所示，SOC估计误差曲线如图 10所示，HPPC
电流工况下改进算法前后的仿真结果如表 4. 同
理，继续沿用 HPPC电流工况设置的参数初始值，

在 UDDS电流工况下对不同的 SOC估计方法进行

仿真验证，改进算法前后的 SOC估计结果和误差

曲线分别如图 11和图 12所示，UDDS电流工况下

算法改进前后的仿真结果如表 5.
 3.3    实验验证

本文选用亿纬锂能电池厂商生产的型号为 EVE-
INR18650/25P的圆柱型锂离子电池为实验电池，

其电池的正极材料为三元锂 (NCM)，标定电池容

量为 2.5 A·h. 选用 DST电流工况对电池进行放电

实验 . 设计的 DST电流工况实验布置如图 13所

示，实验步骤如图 14所示 . 电池实验的放电负载

选用中创电子公司生产的单通道可编程直流负

载，型号为 ET5410A，该设备可以提供 1 mA/10 mA
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Fig.7      Results  of  simulated  working under  the  UDDS(Ⅰ);  FUDS (Ⅱ)
and DST (Ⅲ) conditions: (a) simplified electrochemical model, (b) coupled
model

 

表 3    UDDS、FUDS、DST电流工况下的端电压误差

Table 3    Terminal voltage errors under UDDS, FUDS, and DST
current conditions V

Lithium battery
model

UDDS current
operating condition

error

FUDS current
operating

condition error

DST current
operating

condition error
Simplified

electrochemical
model

0.0299 0.0279 0.0238

Coupling model 0.0316 0.0284 0.0247
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Fig.8    Principle of the improved SOC estimation method

 

表 4    HPPC电流工况下改进算法前后的仿真结果

Table 4    Simulation  results  before  and  after  improvement  of  the
algorithm under HPPC current conditions

SOC estimation method SOC relative
error/%

SOC maximum
error/%

Before improved EKF
algorithm 2.996 6.636

After improved EKF algorithm 2.261 7.215

Before improved AEKF
algorithm 1.098 1.433

After improved AEKF
algorithm 0.213 0.363

Before improved UKF
algorithm 0.318 1.497

After improved UKF algorithm 0.127 0.888

OCV lookup table method 1.369 6.236
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Fig.9    Simulation results under HPPC conditions
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Fig.10    SOC estimation error under HPPC conditions
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Fig.11    Simulation results under UDDS conditions
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分辨率的稳定负载电流，并提供了多种不同的测

试模式，其也支持与上位机的串口通信，将采集数

据通过 RS485与上位机软件进行通信 . 电池负载

设备参数如下表 6所示 . 将上述充放电设备连接

到实验电池，即可进行电池的放电实验，放电负载

与上位机通信并采集数据，然后进行电池的 SOC
估计.

每个循环持续时间为 32 min，每次循环放电

约 0.5 A·h，对应 20% 的 SOC，并在第五次循环后

结束放电 . 放电实验设计的 DST电流工况曲线和

电池电压变化分别如图 15（a），图 15（b）所示.
在 LM非线性最小二乘方法的辨识下，将参数

输入至模型中 ，并联合传统的 FFRLS（Forgotten
factor recursive least squares）算法下的等效电路模

型进行对比验证 . 实验结果如图 16和 17所示；其

两种不同参数辨识下的模型输出端电压结果、计

算绝对误差并取平均值、计算最大误差值见表 7
所示.

将参数辨识结果在耦合模型的基础上利用卡
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Fig.12    SOC estimation error under UDDS conditions

 

表 5    UDDS电流工况下改进算法前后的仿真结果

Table 5    Simulation  results  before  and  after  improvement  of  the
algorithm under UDDS current conditions

SOC Estimation method SOC Relative
error/%

SOC Maximum
error/%

Before improved EKF algorithm 5.185 8.082

After improved EKF algorithm 2.547 5.447

Before improved AEKF algorithm 2.369 5.132

After improved AEKF algorithm 0.880 1.429

Before improved UKF algorithm 0.816 2.708

After improved UKF algorithm 0.316 1.035

OCV lookup table method 1.525 5.512
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图 13    电池实验布置

Fig.13    Battery experimental arrangement
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Fig.14    Steps of the experimental DST conditions
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尔曼滤波算法进一步进行 SOC估计，并分别验证

改进前后的 SOC估计方法，首先验证 SOC初值为

1时的估计结果 . 由于本次实验的数据为 5 s采样

一次，整体数据量不大，所以不需要设置修正能力

强的遗忘因子 λ 来保证协方差矩阵的修正能力，

故设定 λ=0.998，改进前后的算法参数取相同数值.
将上述初值分别代入到卡尔曼滤波算法后，经过

算法迭代，SOC估计结果和相对误差曲线分别如

图 18和 19所示.
该实验是基于 AMD/R7/4800H 2.9  GHz处理

器，16 G内存，在 Matlab/2020a下的计算结果，将

上述的实验数据仿真误差以及程序的运行时间等

结果汇总到表 8中，为保证时间可靠，取 5次运行

时间下的平均值作为对比结果 .  UDDS、 FUDS、
DST实验电流工况不同 SOC初值下的估计结果和

估计误差见图 20和 21所示.
 3.4    实验结果分析

对图 16中耦合模型及等效电路模型的误差曲

线利用概率分布进一步分析，并计算出电压的误

差概率分布，结果如图 22所示. 通过结果可知，耦

合模型第 90百分位的误差仅小于 40 mV，而第

50百分位的误差仅小于 20 mV. 而等效电路模型

第 90百分位的误差却达 70 mV，第 50百分位的误

 

表 6    ET5410A放电负载参数

Table 6    ET5410A discharge load parameters

ET5410A parameter of apparatus Numerical

Reference input

Power 400 W

Input voltage 0−150 V

Incoming current 0−40 A

Constant current mode

Range 0−3 A，0−40 A

Resolution ratio 1 mA，10 mA

Accuracy ±(0.05%+0.05% FS)

Constant power mode

Range 0−400 W

Resolution ratio 10 mW

Accuracy ±(0.1%+0.5% FS)

Battery testing
Maximum discharge capacity 9999 A·h

Resolution ratio 1 mA，10 mA

Voltage test value

Range 0−20 V，0−150 V

Resolution ratio 1 mV，10 mV

Accuracy ±(0.05%+0.1% FS)

Current test value

Range 0−3 A，0−40 A

Resolution ratio 1 mA，10 mA

Accuracy ±(0.05%+0.1% FS)

Power test value

Range 0−400 W

Resolution ratio 10 mW

Accuracy ±(0.1%+0.5% FS)
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图 15    实验设计的 DST工况电流 (a)和电压曲线 (b)

Fig.15    Current (a) and voltage curves (b) under the DST condition designed in the experiment
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Fig.16    Comparison of output voltages
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Fig.17    Comparison of error curves for output voltage
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差达 30 mV. 这表明耦合模型能够更好地跟随端电

压变化，而且在整个放电区间下的绝大分电压误

差都比较小，由于设计的 DST电流工况有突变和

静置阶段，电池会发生极化反应，而实验结果也说

明了耦合模型能够更好地反映出极化特性电压变

化，远超常用的 FFRLS算法下的二阶 RC等效电

路模型.
在电池模型的基础上，通过图 19的 SOC估计

误差曲线和表 8中的 SOC估计对比结果可知，改

进后的 SOC估计方法在 EKF、AEKF和 UKF算法

上都有一定的提升，平均绝对误差分别减少 1.0165%、

0.0373% 和0.0532%；最大绝对误差分别减小0.5496%、

0.0947% 和 0.0175%.
从实验结果上看，EKF算法的提升程度远大

于 AEKF和 UKF算法，这也与仿真结果是保持一

致的，表明通过电化学机理输出得到的 OCV值更

 

表 7    实验两种参数辨识下电池模型输出误差对比

Table 7    Comparison of output errors of the battery model under
identification with two experimental parameters V

Battery model Mean absolute error
value

Maximum
error

LM-simplified electrochemical model 0.0152 0.1764

LM-electrochemical mechanism
coupling model 0.0193 0.1794

FFRLS-equivalent circuit model 0.0285 0.2401
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图 18    改进后的 SOC估计曲线

Fig.18    Improved SOC estimation curve

 

0 2000 4000 6000 8000 10000

Time/s

0

0.5

1.0

1.5

2.0

2.5

3.0

A
b
so

lu
te

 v
al

u
e 

o
f 

re
la

ti
v
e 

er
ro

r/
%

Traditional-EKF
Improved-EKF

Traditional-UKF
Improved-UKF

Traditional-AEKF
Improved-AEKF

图 19    改进后的 SOC估计误差曲线

Fig.19    Improved SOC estimation error curve

 

表 8    实验 DST电流工况下的误差及仿真时间对比

Table 8    Comparison  of  error  and  simulation  time  under  experimental
DST current conditions

SOC Estimation
method

Mean absolute
error value/%

Maximum absolute
error value/%

Run
time/s

Before improved EKF
algorithm 1.9855 2.4009 1.8967

After improved EKF
algorithm 0.9690 1.8513 2.3436

Before improved
AEKF algorithm 0.2680 0.6066 1.9233

After improved AEKF
algorithm 0.2307 0.5119 2.6216

Before improved UKF
algorithm 0.2111 0.9102 2.0669

After improved UKF
algorithm 0.1579 0.8927 2.4615
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图 20    实验电流工况不同 SOC初值下的 SOC估计结果

Fig.20    SOC estimation results under different initial SOC values under
experimental current conditions
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图 21    实验电流工况不同 SOC初值下的 SOC估计误差

Fig.21    SOC estimation errors under different initial SOC values under
experimental current conditions
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Fig.22    Error probability distribution of the coupled model voltage
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加精确，在进行泰勒展开式时所得到的非线性系

统更加准确，EKF算法的平均绝对误差减少 1.0165%，

最大误差减少 0.5496%.
从 SOC估计算法的总运行时间上看，改进后的

EKF、AEKF和UKF算法分别增加了 0.4469、0.6983
和 0.3946 s，在加入电化学机理后，增加的总运行

时间小于 1 s，而处理的采样点数据却有 2042个，

增加的时间对于实际的采样步长 5 s来讲可以忽

略不计，表明了改进后的 SOC估计方法有很好的

实时性.
综上，考虑了电化学机理的耦合模型能够很

大程度上提升模型的输出精度，并提供了电池的

内部电化学反应状态，利用这些反应状态可以更

深入地将电化学机理与电压特性结合起来，同时

改进后的 SOC估计方法能够快速提供给 BMS一

个准确的估计值，相比于传统的 EKF、AKEF和

UKF算法，本文算法的 SOC估计精度得到了提升，

避免了因为 OCV和电池模型精度导致的 SOC估

计误差，特别是提升了 EKF算法的 SOC估计精度.

 4    结论

本文主要研究了锂离子电池耦合模型的建模

和基于卡尔曼滤波算法的 SOC估计方法 . 传统的

卡尔曼滤波算法比较依赖 SOC–OCV曲线，OCV
的精度直接影响了 SOC估计精度. 其次，当前使用

较多的等效电路模型虽然有着计算量小，原理简

单的优点，但模型的精度一般，且无法通过模型参

数来反映电池的内部电化学机理；电化学模型的

精度虽高，但计算量过大，却实时性差，无法直接

在线应用 . 为此，本文针对这两个问题展开了研

究，结合电池等效电路模型和电化学模型，提出了

一种基于电化学机理的耦合模型，并在此基础上

设计了参数辨识算法；其次在卡尔曼滤波算法的

基础上进行了改进，形成了一种新的 SOC估计方

法，最后通过仿真和实验验证了本文所建立的耦

合模型与 SOC估计方法.
实验结果表明：耦合模型大幅提升了模型精

度，UDDS、FUDS和 DST的电流工况下平均绝对

误差仅为 31.6、28.4和 24.7 mV. UDDS工况下 SOC
估计的平均误差分别降低 2.638%，1.489% 和 0.5%，

最大误差分别降低 2.635%，3.703% 和 1.673%.
本文所提出的耦合模型以及电化学模型保留

了电池的电化学机理特性，后期可以进行更深层

次的探究，探究耦合模型中每个参数对电池性能、

极化特性、滞回特性等的影响. 并通过电化学机理

对电池的容量、内阻、健康状态 (SOH)等进行联

合估计. 另外，本文所提出的耦合模型和 SOC估计

方法未考虑到温度的影响，后期可以结合电池温

度因素，将电池热特性模型也结合到耦合模型中

去，进一步提升精度和实用性.
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