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ABSTRACT As one of the core functions of a battery management system (BMS), state-of-charge (SOC) estimation for lithium-ion
batteries can effectively prevent overcharging and overdischarging, thereby extending battery service life. Considering the respective
advantages and limitations of equivalent circuit and electrochemical models, this study begins with battery modeling and establishes a
new coupling model by deriving the electrochemical mechanism model and integrating it with the equivalent circuit model. After
establishing the electrochemical model, the differential equations of this complex model were simplified using Padé approximation,
converting the nonlinear equations into a more tractable polynomial form. This approach not only improves model accuracy but also
ensures good real-time performance while reflecting the internal reaction mechanisms of the battery. For parameter identification of the
coupling model, the Levenberg—Marquardt (LM) nonlinear least-squares method was employed due to its weak dependence on initial
value settings. This method was used to identify 22 parameters within the model. Additionally, the Kalman filtering algorithm was
improved based on the coupling model. The original equivalent circuit model was replaced with the coupling model, incorporating more

electrochemical parameter information to enhance model accuracy. Furthermore, the open-circuit voltage (OCV) of the battery was
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derived from the relationship between the Li" concentration in the electrochemical model and the open-circuit voltages (OCV,) of the
positive and negative electrodes. With accurately identified coupling model parameters and a higher-fidelity battery model, the OCV
derived from experimental data was replaced with the model-based OCV, enhancing the Kalman filter algorithm’s accuracy. This
replacement also mitigated the impact of sampling errors and hysteresis. After the simulation of UDDS (Urban dynamometer driving
schedule), FUDS (Federal urban driving schedule), and DST (Dynamic steering test) conditions, the average absolute error was only
18.6, 28.4, and 24.7 mV, respectively. Based on these simulations, a battery discharge experiment was conducted using a cylindrical
lithium-ion battery with a ternary lithium (NCM) positive electrode and a calibrated capacity of 2.5 A-h. A dynamic steering test (DST)
current profile was applied, with each 32-min cycle discharging approximately 0.5 A-h (20% SOC), ending after the fifth cycle. The
model parameters identified using the LM method were input into the model, and comparisons were made using the traditional
FFRLS(Forgotten factor recursive least squares) algorithm with the equivalent circuit model. Simultaneously, SOC estimation was
performed using the coupling model and the improved Kalman filter algorithm, and the estimated SOC values were compared with
experimental results. Under DST conditions, the extended Kalman filter (EKF) algorithm showed the greatest improvement: the average
estimation error was reduced by 1%, significantly enhancing SOC estimation accuracy. The result demonstrates that the coupling and
electrochemical models developed in this study preserve the battery’s electrochemical characteristics. Despite incorporating the
electrochemical mechanism, the proposed SOC estimation method does not significantly increase runtime, offers strong real-time
performance, and enables effective online SOC estimation for lithium-ion batteries.

KEY WORDS lithium battery coupling model; electrochemical model; Kalman filter algorithm; state of charge (SOC); nonlinear least

square method
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Fig.1 Topology of the second-order RC equivalent circuit model
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Table 1 Electrochemical model parameters

Model parameter Name Unit
A Collecting plate area m?
L, Positive plate length pum
L, Negative plate length pum
Ly, Diaphragm length um
L Plate electrode length um
F Faraday constant C-mol™
R, Positive electrode particle radius pum
R, Negative electrode particle radius pum
R Gas constant J-mol K
T Temperature K
Dy, Solid phase negative electrode Li" diffusion coefficient m?s™!
Dy, Solid phase positive electrode Li" diffusion coefficient m?s™
D, Electrolyte Li" diffusion coefficient m?s™!
k Reaction rate constant mol **m**s™
Ry Contact resistance Q
K Effective Li" conductivity of electrolyte sm’
Ep Pore volume of solid phase positive electrode m*m”
Esn Pore volume of solid phase negative electrode m’m”
Eep Porosity at the positive electrode electrolyte m*m”
Een Porosity at the negative electrode electrolyte m’m’
9 Particle transfer coefficient -
Cymaxp Maximum Li" concentration in the positive electrode mol-m™
Cs maxn Maximum Li" concentration in the negative electrode mol-m™
Coop Initial Li" concentration in the positive electrode mol'm™
Con Initial Li" concentration in the negative electrode mol-m™
Ceo Initial Li" concentration in the electrolyte mol-m
Cep Concentration at the positive electrode electrolyte mol'm™
Cen Concentration at the negative electrode electrolyte mol'm
asp Positive electrode specific interfacial area —
Qg Negative electrode specific interfacial area —
[ Positive and negative electrode transfer coefficient —
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Fig.3 Solution logic of the electrochemical model and the concept of establishing the terminal voltage equation
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Table 2 Comparison of identified electrochemical parameters of the batteries

Idenification Parameter scale Refer to the  Identification result ~ Idenification Parameter scale Refer to the  Identification result
parameter actual values  of the LM algorithm parameter actual values  of the LM algorithm
K — — 5.7016 Dy, — — 4.158%10°"
Esp [0.2,0.5] 0.297 0.41961 Dy, [5%107, 1.5%107"] 10" 9.726x10™"
Esn — 0.471 0.22434 D, (10", 10 7.5x10" 7.597x107"
Eep — — 0.44542 Comaxp — 22860 17816
Een - - 0.35744 Comaxn — 26390 22741
9 [0.1,0.5] 0.363 0.3721 Coop [2000, 6500] 3900 4992.3
A — — 0.66024 Cson [107%, 3.5%x107] 14870 12082
R, [5%10°,107] 8x10°° 9.8573x10°° Ceo [1800, 2200] 2000 2024
R, [107, 1.6x107] 1.25x10°° 1.068x10°7° L, [180x10°, 197x10°°] 183x10° 225.68x10°°
k [10™",3.5x10 2x107" 2.006x10™"! L, [92x10°°, 125x10°] 100x10°° 52.374x10°°
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Simpliﬂed electrochemical model : Second order RC model
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Table 5 Simulation results before and after improvement of the
algorithm under UDDS current conditions

SOC Estimation method Sogrrlzf/l; ive Socerl\rii)/(‘;?mm
Before improved EKF algorithm 5.185 8.082
After improved EKF algorithm 2.547 5.447
Before improved AEKF algorithm 2.369 5.132
After improved AEKF algorithm 0.880 1.429
Before improved UKF algorithm 0.816 2.708
After improved UKF algorithm 0.316 1.035
OCYV lookup table method 1.525 5.512
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Fig.13 Battery experimental arrangement
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Table 6 ET5410A discharge load parameters

ET5410A parameter of apparatus Numerical
Power 400 W
Reference input Input voltage 0-150 V
Incoming current 0-40 A
Range 0-3A,0-40 A
Constant current mode Resolution ratio I mA, 10 mA
Accuracy +(0.05%+0.05% FS)
Range 0—-400 W
Resolution ratio 10 mW

Constant power mode

Accuracy +(0.1%+0.5% ES)
Maximum discharge capacity 9999 A-h
Battery testing
Resolution ratio 1 mA, 10 mA
Range 0-20V,0-150 V
Resolution ratio I mV, 10 mV

Voltage test value

Accuracy +(0.05%+0.1% FS)
Range 0-3A,0-40 A
Current test value Resolution ratio 1 mA, 10 mA

Accuracy +(0.05%+0.1% FS)
Range 0-400 W
Power test value Resolution ratio 10 mW

Accuracy +(0.1%+0.5% ES)
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Table 7 Comparison of output errors of the battery model under 0.8 —— AEKF-SOC,=0.7 ---+ EKF-SOC;=0.5
‘dentificati : : : - AEKF-SOC,=0.5 === EKF-SOC,=0.3
identification with two experimental parameters \% = AEKF-SOC=0.3 EKF-SOC,=0.1
AEKF-SOC=0.1 —— UKF-SOC=0.7
Mean absolute error Maximum @) -~ UKE-S0G=0.5
Battery model O
value error 17
LM-simplified electrochemical model 0.0152 0.1764
LM—electrochc?mlcal mechanism 0.0193 0.1794 '
coupllng mOdel 0 2000 2500 3000
. - 0
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Table 8 Comparison of error and simulation time under experimental

DST current conditions

SOC Estimation Mean absolute Maximum absolute ~ Run

method error value/% error value/% time/s

Before improved EKF 1.9855 2.4009 1.8967
algorithm

After improved EKF 0.9690 1.8513 2.3436
algorithm

Before improved

AEKF slgorithn 0.2680 0.6066 1.9233

After improved AEKF 0.2307 0.5119 2.6216
algorithm

Before improved UKF 02111 0.9102 2.0669
algorithm

After improved UKF 0.1579 0.8927 2.4615
algorithm
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