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ABSTRACT Mercury (Hg), a major contaminant in soil heavy metal pollution, poses serious health risks to humans. Current soil
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quality standards primarily regulate pollution based on the total concentration of pollutants in the soil, without fully accounting for the
actual amount absorbed during human exposure, which may lead to an overestimation of health risks. This article summarizes the current
situation of soil Hg pollution, its migration and transformation mechanisms, and its toxic effects on human health, along with their
underlying mechanisms. It also reviews the advantages, disadvantages, and applications of in vivo and in vitro models used for Hg health
risk assessment, and finally proposes the selection of soil Hg pollution remediation methods based on refined human health risk
assessments. The results show that the spatial variation of soil Hg content in China is large, and the soil Hg content in provinces,
municipalities, and autonomous regions is closely related to Hg emissions from industrial and mining atmospheres. Regions with high
average soil Hg content are distributed in coastal areas with Hg-related industrial activity. After migration and transformation, soil Hg
comes into contact with the population, enters the human bloodstream and brain, and poses health risks. Hg exposure has a significant
negative impact on health. Cells are prone to death under Hg exposure due to the production of reactive oxygen species, inhibition of
antioxidant stress proteins, and increased oxidative stress. At low concentrations, organic Hg induces apoptosis in differentiated human
neurons, whereas high concentrations cause cell necrosis, severely impacting the nervous system. Hg exposure during the embryonic and
childhood periods leads to nerve damage in later stages of life. Hg exposure disrupts mitochondrial function in kidneys, affecting their
metabolism. Many studies on Hg toxicity use in vivo mouse models alongside in vitro cell models of the intestine, nervous system, and
kidneys to investigate the potential toxic effects of Hg. Brain nerve and liver cancer organoid models have been applied to study the
neurotoxicity and liver cancer toxicity mechanisms of heavy metals. Existing remediation methods for soil Hg pollution include soil
replacement, thermal desorption, microbial remediation, phytoremediation, soil fixation and stabilization remediation, soil leaching, and
nanomaterial-based remediation technologies. However, the current evaluation system tends to overestimate health risks. Based on the
results of the human health risk assessment of soil Hg pollution, selecting targeted remediation methods for specific regions will
effectively reduce remediation costs and improve remediation efficiency. To make the assessment results more realistic and accurate,
future studies can utilize organoid models to investigate the corresponding toxicity of soil Hg pollution. Additionally, a differentiated
assessment model can be established by comprehensively considering different exposure pathways and individual differences for precise
human health risk assessment. Based on the refined assessment results, multifaceted control and remediation of soil Hg pollution can be
carried out to effectively reduce the health risks of soil Hg pollution.

KEY WORDS mercury; soil; animal models; cell models; bioavailability; health risk assessment
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Table 1 Toxic effects of soil mercury on animals and humans

Target/organ Toxic symptom Reference
Neurological disorders of memory, mood problems, depression, sleep disorders, hearing loss, _
Nervous system schizophrenia, bipolar disorder (bipolar disorder). [28-29]
(D Embryo defect disorder, sperm motility significantly reduced, causing infertility, and affect
Reproductive system ~ newborn development. @ Mercury exposure affects frog survival and embryonic development [30-31]
processes, reduces reptile reproduction, and induces genotoxic effects in salamanders.
Cardiovascular system Rapid heartbeat, 1.rregular pulse, chest.pam, palpitations, hypertension, myocardial infarction, (32]
coronary dysfunction and arteriosclerosis.
DNA Influence genetic and epigenetic factors. [33]
The activities of monoamine oxidase and cholinesterase decreased with the increase of mercury
Enzyme system [34]

levels in wild river otter and wild mink.
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Fig.3 Toxic effects of bioavailable mercury
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ADD, ol N4 TR T 1 Hg 19 H 34 2 5%
(mg-kg'-d™"); ADDyy, M WU 45 A 138 Hg 19 H °F
P 7% %% 2 (mg'kg "d™") 5 ADDyermal-soit M B K 4% firk
AT Hg 9 H P R & (mg'kg-d™); HQ N
& T, HQ>1, FA7E R XU ES, HQ /N T 1, Jofd B
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Table 2 Health risk assessment and calculation of mercury in soil based on the total amount
Location Ii:gn?golil;?)t/ (ﬁqg?(?llizil‘/) (m/;']igD’i‘n-hc/l’l) ?n]?;ﬂgfﬁl;ﬂi;/ HQralsoil HQjun HQgermalsoil  Health risk  Reference

Lithgow, Australia 0.053 7.26x107° 1.07x107" 8.69x107° 4.54x10™ 6.69x107* 5.43x107° [51]
Athenas, Greece 0.166 2.27%107 3.34x107" 2.72x10°® 1.42x107° 2.09x1077 1.70x10™* [52]
Aviles, Spain 0.570 7.81x1077 1.15x107"° 9.35x10°* 4.88x10°° 7.19x1077 5.84x107* [53]
Kavala, Greece 0.100 1.37x107 2.01x10™" 1.64x10°® 8.56x107* 1.26x107 1.02x10™* [54]
Xiamen, China 0.460 6.30x107  9.27x107"  7.54x10°*  3.94x10°  5.79x107  4.71x10* No healthrisk  [55]
Beijing, China 0.300 411107 6.04x107"  4.92x10°  2.57x107  3.78x107  3.08x107* [56]
Berlin, Germany 0.420 5.75%x107 8.46x107" 6.89x107* 3.59x107 5.29x1077 431x10* [57]
Yerevan, Armenia 0.115 1.58x1077 2.32x107" 1.89x10°® 9.88x107° 1.45%1077 1.18x10™* [58]
Gyumri, Armenia 0.070 9.59x10°* 1.41x10™" 1.15x10°* 5.99x107* 8.81x107* 7.19x107° [59]
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Fig.4 Intestinal cell model: Caco-2 monolayer cell model; (b) Caco-2/HT29-MTX co-cultured cell model; (¢) Caco-2/HT29-MTX/THP-1 differentiated

macrophage co-culture cell model
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Table 3 Comparison of soil mercury pollution remediation technologies

Remediation

Restoration technique efficiency Recondition cost Applicable soil type Environmental impact Technical feasibility =~ Reference
. . High, mc'ludes Suitable for all soil May cause secondary Simple, suitable for
. High, quickly removes excavation, . . . . small-scale or
Soil replacement . types, especially in  pollution; waste soil .
pollutants transportation, and . emergency repair
. heavily polluted areas ~ needs treatment .
disposal costs projects
. High, effective for . . . High ener; Suitable for rapid
Thermal analysis g High, consumes a lot Sandy soil or soil with £h energy . pie
. volatile mercury o consumption; may remediation of specific
repair . of energy good permeability . .
organic compounds damage soil structure contaminants
Medium to high, LOW ?O me.dlumf Organically Environmentally Spemﬁ? conditions are
. . . . . primarily microbial . . . required, such as
Microbial remediation depends on microbial contaminated soil, friendly, no secondary .
. ... __agent and management . suitable temperature
activity and conditions such as farmland pollution o
costs and humidity

Low, primarily plant ~ Heavy metal and Environmentally Suitable for large-

Phytoremediation Medium, restricted by cultivation and organic contaminated friendly; improves soil  scale, long-term [104-107]

plant growth cycle maintenance costs

Medium to high, Medium, mainly for
Fixed stabilization effectively reduces the L y
repair mieration of heav stabilizers and
’ £ Y treatment costs
metals.

Medium, leachate
treatment costs should
be considered
High, due to
preparation and
application of
nanomaterials

Medium, effective for
water-soluble mercury

Soil leaching
remediation

High, effective for
specific mercury
pollutants

Nanomaterial repair

soil structure

Heavy metal
contaminated soil

Sandy soil or soil with
good permeability  groundwater pollution

All kinds of soil,
material choice
depends on pollutant pose ecological risks

restoration projects

May change soil
properties and affect
subsequent utilization

Suitable for long-term
stabilization treatment

Suitable for the
removal of specific
pollutants

May cause

Non-degradable
nanomaterials may

Emerging technology
that needs further
validation
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