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ABSTRACT This paper proposes a reinforcement learning (RL)-based control framework utilizing the proximal policy optimization
(PPO) algorithm to address compliance issues in cooperative transportation tasks for heterogeneous tri-robot systems. The focus is on
enhancing motion coordination and force adaptability in three heterogeneous robots during collaborative object transportation. A high-
fidelity simulation environment was first constructed in the CoppeliaSim robotic simulator, where the tri-robot with distinct kinematic
and dynamic configurations was programmed to collaboratively manipulate a shared object. Comparative simulations were conducted
between traditional force control methods and the proposed RL-based approach to evaluate the robot performance in trajectory tracking
accuracy, motion smoothness, and system compliance. Under the RL control framework, the PPO algorithm was trained to optimize the
robots’ joint actions by maximizing a reward function designed to penalize trajectory deviations, excessive contact forces, and abrupt
velocity changes. The simulation results demonstrate that the RL-controlled system achieves remarkable improvements in vertical (Z-
axis) trajectory tracking precision. Specifically, the trajectory error of the object’s center of mass in the Z-direction was reduced to 4.7%
of that observed under conventional force control. Furthermore, Robot 2—selected as a representative agent owing to its central role in

the task—exhibited significantly smoother motion characteristics under RL control. Its end-effector velocity variations in the horizontal
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(X=Y) plane were attenuated by 82% compared to force control, while angular velocity fluctuations in its primary rotational joint were
reduced to 35% of the baseline values, indicating enhanced mechanical compliance and reduced oscillatory behavior. To validate the
real-world applicability of the learned policies, a sim2real transfer methodology was implemented. The control strategies were deployed
on a physical tri-robot platform comprising one six-degrees-of-freedom (DOF) industrial manipulator and two customized four-DOF
collaborative robots, tasked with synchronously transporting a deformable payload. The experimental results agreed with simulation
predictions: the RL-based controller maintained superior Z-direction trajectory tracking performance, limiting errors to 5.4% of those
under force control. Robot 2’s motion compliance showed further improvement in physical experiments, with its X-direction velocity
variations reduced to 20.7% of the force control benchmark. Critical joint-level analyses revealed that the angular velocity variations of
Robot 2’s third joint—a pivotal component for vertical motion compensation—were suppressed to 35.2% of the force control values,
confirming the RL controller’s ability to mitigate mechanical vibrations and adapt to dynamic payload interactions. The study also
investigates the robustness of the RL framework to real-world uncertainties, including sensor noise, communication latency, and payload
deformation. Despite these challenges, the RL controller maintained stable performance, achieving a 92% reduction in peak contact
forces compared to force control during sudden payload shifts. Statistical analyses of motion data further indicated that the RL-based
system reduced the standard deviation of inter-robot coordination errors by 76% and 68% in simulation and physical experiments,
respectively, underscoring its consistency across domains. Both simulation and experimental findings conclusively demonstrate that the
PPO-based RL framework not only surpassed traditional force control in precision and compliance but also successfully bridged the
sim2real gap. The framework’s ability to learn adaptive policies in simulation and transfer them to physical robots with minimal fine-
tuning highlights its potential for deployment in industrial applications requiring heterogeneous multi-robot collaboration. This work
advances the field of compliant robotic control by providing a scalable, data-driven solution that harmonizes trajectory accuracy, motion
smoothness, and real-world adaptability in complex cooperative tasks.

KEY WORDS heterogeneous; tri-robot; collaborative handling; reinforcement learning; flexibility
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Table 1 Comparison of simulation results of tri-robot collaborative handling
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Reinforcement ) o7 08 07 08 04 124 12,6 24 2.0 22 25 26 112
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Fig.9 Tri-robot collaborative handling experimental platform
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Table 2 Comparison of experiment results of tri-robot collaborative handling

Fluctuation of robot 2 of

Position error Position average Fluctuation of robot 2 . Fluctuation of angular
. . . . 4 average error terminal . o 1
Method of object/mm error of object/mm terminal velocity/(mm-s ) velocity/(mm-s™) velocity of robot 2/(°-s™)
X Y VA X Y VA X VA X Y VA Joint2 Joint4  Joint 5
Force control  25.9 20.3 224 8.6 8.8 14.0 7.2 2.6 0.7 0.5 0.3 0.4 0.6 1.9
Reinforcement ) ) 53 g1 11 11 70 23 14 03 0.2 0.2 0.1 03 11

learning
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