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异构三机器人协同搬运的高柔顺性研究
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技术师范大学自动化学院，广州 510665
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摘    要    针对异构三机器人系统的协同搬运柔顺性问题，提出基于近端策略优化（Proximal policy optimization）的强化学习控

制方法. 在 CoppeliaSim机器人仿真器中建立了异构三机器人协同搬运的仿真环境，分别开展了力控制与强化学习控制的对

比仿真. 仿真结果表明：强化学习控制下，物体质心的轨迹误差在 Z 方向上最优，仅为力控制的 4.7%，机器人 2的末端速度变

化和其典型关节的角速度变化更为平滑. 采用 sim2real的方法，将两种控制方法部署到三机器人协同搬运实验中. 实验结果

表明：强化学习控制下，Z 方向的物体轨迹跟踪误差同样最优，仅为力控制的 5.4%. 机器人 2在 X 方向上的速度变化仅为力控

制的 20.7%，其典型关节展现出更好的柔顺性，角速度变化仅为力控制下的 35.2%. 仿真与实验结果表明：强化学习的控制效

果更优，也具备从仿真到现实迁移的可行性.

关键词    异构的；三机器人；协同搬运；强化学习；柔顺性
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High flexibility of heterogeneous tri-robot collaborative handling
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ABSTRACT    This paper proposes a reinforcement learning (RL)-based control  framework utilizing the proximal policy optimization

(PPO) algorithm to address compliance issues in cooperative transportation tasks for heterogeneous tri-robot systems. The focus is  on

enhancing motion coordination and force adaptability in three heterogeneous robots during collaborative object transportation. A high-

fidelity simulation environment was first  constructed in the CoppeliaSim robotic simulator,  where the tri-robot with distinct kinematic

and dynamic configurations  was  programmed to  collaboratively  manipulate  a  shared object.  Comparative  simulations  were  conducted

between traditional force control methods and the proposed RL-based approach to evaluate the robot performance in trajectory tracking

accuracy, motion smoothness, and system compliance. Under the RL control framework, the PPO algorithm was trained to optimize the

robots’  joint  actions  by maximizing a  reward function designed to  penalize  trajectory deviations,  excessive contact  forces,  and abrupt

velocity  changes.  The simulation results  demonstrate  that  the  RL-controlled system achieves  remarkable  improvements  in  vertical  (Z-

axis) trajectory tracking precision. Specifically, the trajectory error of the object’s center of mass in the Z-direction was reduced to 4.7%

of that observed under conventional force control. Furthermore, Robot 2—selected as a representative agent owing to its central role in

the task—exhibited significantly smoother motion characteristics under RL control. Its end-effector velocity variations in the horizontal 
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(X–Y) plane were attenuated by 82% compared to force control, while angular velocity fluctuations in its primary rotational joint were

reduced  to  35% of  the  baseline  values,  indicating  enhanced  mechanical  compliance  and  reduced  oscillatory  behavior.  To  validate  the

real-world applicability of the learned policies, a sim2real transfer methodology was implemented. The control strategies were deployed

on  a  physical  tri-robot  platform  comprising  one  six-degrees-of-freedom  (DOF)  industrial  manipulator  and  two  customized  four-DOF

collaborative  robots,  tasked  with  synchronously  transporting  a  deformable  payload.  The  experimental  results  agreed  with  simulation

predictions:  the  RL-based  controller  maintained  superior Z-direction  trajectory  tracking  performance,  limiting  errors  to  5.4%  of  those

under  force  control.  Robot  2’s  motion  compliance  showed further  improvement  in  physical  experiments,  with  its X-direction  velocity
variations reduced to 20.7% of the force control benchmark. Critical joint-level analyses revealed that the angular velocity variations of

Robot  2’s  third  joint—a pivotal  component  for  vertical  motion compensation—were suppressed to  35.2% of  the  force  control  values,

confirming  the  RL  controller’s  ability  to  mitigate  mechanical  vibrations  and  adapt  to  dynamic  payload  interactions.  The  study  also

investigates the robustness of the RL framework to real-world uncertainties, including sensor noise, communication latency, and payload

deformation.  Despite  these  challenges,  the  RL  controller  maintained  stable  performance,  achieving  a  92%  reduction  in  peak  contact

forces  compared to  force  control  during sudden payload shifts.  Statistical  analyses  of  motion data  further  indicated that  the  RL-based

system  reduced  the  standard  deviation  of  inter-robot  coordination  errors  by  76%  and  68%  in  simulation  and  physical  experiments,

respectively, underscoring its consistency across domains. Both simulation and experimental findings conclusively demonstrate that the

PPO-based  RL  framework  not  only  surpassed  traditional  force  control  in  precision  and  compliance  but  also  successfully  bridged  the

sim2real gap. The framework’s ability to learn adaptive policies in simulation and transfer them to physical robots with minimal fine-

tuning  highlights  its  potential  for  deployment  in  industrial  applications  requiring  heterogeneous  multi-robot  collaboration.  This  work

advances the field of compliant robotic control by providing a scalable, data-driven solution that harmonizes trajectory accuracy, motion

smoothness, and real-world adaptability in complex cooperative tasks.

KEY WORDS    heterogeneous；tri-robot；collaborative handling；reinforcement learning；flexibility

面向机器人技术的典型应用场景，如大尺寸

或者大负载的物体搬运，目前主要由单个机器人

来执行，其能力受到其固有机制和预定义程序的

限制 . 采用多个机器人之间的协同配合来执行任

务，能够可靠地完成单个机器人无法完成的高精

度作业[1]. 这种分布式操作方法可以通过冗余提高

其鲁棒性，并通过使用多个简单的机器人，而不是

单个强大的机器人来降低成本 . 多机器人协同可

广泛用于机器人协同搬运、装配、冲压、焊接等领

域，具有高灵活性和环境适应性等特点 [2]，已成为

构建智能无人生产线的研究热点.
目前，已有不少关于多机器人协同作业的运

动控制和路径规划研究 . Solanes等 [3] 采用滑模方

法设计机器人的力控制系统，提出基于任务优先

级的机器人位置力混合控制方法 . 毛欢 [4] 针对双

机器人协同夹持物体与外界环境接触的力控作业

任务，提出内外双环阻抗控制策略，实现了双机器

人协作系统的内外力跟踪 . 段晋军 [5] 提出自适应

变阻抗双臂力/位协调控制方法，完成了空间复杂

焊缝的多机器人协同焊接任务 . 苏牧青等 [6] 针对

多无人车围捕问题，提出了基于 SAC算法的协同

围捕算法，通过加入长短期记忆及注意力机制提

升了多设备协同效率.
Lan等 [7] 针对智能制造领域多机器人系统协

调拾取与放置，引入深度强化学习算法优化多机

器人协同拾取和放置系统，仿真结果表明该方法

能有效提升生产效率 . Perrusquia等 [8] 提出基于强

化学习的阻抗控制方法，对阻抗控制下，机器人搬

运作业生成的期望力进行学习，从而实现机器人

的柔顺控制. Roveda等 [9] 提出将强化学习（Q学习）

算法用于预测与调整机器人的阻抗控制参数，提

高了机器人协同作业中的力柔顺控制. Zhang等 [10]

提出基于强化学习的双机器人力/位多元数据驱动

方法，主机器人采用理想位置元控制，通过强化学

习算法来学习期望位置；从机器人采用基于主机

器人位置偏差的力元控制，通过强化学习算法来

学习期望作用力，可解决力/位控制中的参数优化

问题.
Liu等 [11] 通过近端策略优化算法 （Proximal

policy optimization, PPO）控制框架，仿真验证该方

法的有效性，为异构多机器人协作任务提供了数

据驱动解决方案，并引入非线性扩张状态观测器

（NNESO）以提升系统抗干扰能力 [12]，并通过将分

数阶多智能体系统（FOMASs）从单积分拓展至多

积分动态 [13]，为多设备协同的实际场景提供了理

论支持.
多机器人协同搬运同一个物体时，各机器人

之间具有物理链接和内力约束，要实现紧耦合必

· 2050 · 工程科学学报，第 47 卷，第 10 期



须通过实施有效的力－位置协同控制策略，从而

有效分配载荷，进而提升多机器人协同作业的柔

顺性 [14]. 为此，本文聚焦异构多机器人系统 [15]，即

具有不同品牌、不同构型和不同能力的多个机器

人，面向三机器人协同搬运场景，通过两种控制方

法的仿真分析与实验研究对比，来解决更广泛的

异构多机器人协同搬运的柔顺性问题.

 1    力控制策略

力控制策略的核心是通过力传感器测量机器

人与环境之间的力和力矩，并将其作为控制输入

进行实时调整 . 通过感知和响应外部力的大小和

方向，使机器人适应不同的工作环境和任务需求.
fd

fs fe

xd
qd q

力控制策略架构如图 1所示， 为期望接触

力， 为机器人末端力传感器测量力， 为力跟踪

误差 . 力控制策略根据力跟踪误差产生期望轨迹

，通过机器人逆运动学关系，输出期望关节角度

到机器人进行运动，机器人输出关节位置 .
 
 

fs

fd x
d

q
d q+

−
fe Force control

strategy
Inverse

kinematics

Force
sensor

Robot

图 1    力控制策略基本架构

Fig.1    Basic structure of force control strategy
 

 2    基于 PPO的强化学习控制策略

强化学习[16]（Reinforcement learning, RL）因其强

大的探索能力与自主学习能力，在机器人控制 [17]

领域应用广泛 . 多机器人协同搬运的强化学习的

基本架构，如图 2所示.
 
 

Action

State

Reward

Environment

Agent

s
t

r
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t

r
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s
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图 2    多机器人协同搬运的强化学习基本架构

Fig.2      Basic  structure  of  reinforcement  learning  for  multirobot
collaborative handling
 

t

st

at

强化学习过程中，智能体与环境一直交互 . 在
某一时刻 ，智能体从环境中获得到该时刻下状态

信息 （States） ，智能体会根据该状态输出动作

（Action） 作用于环境，环境会根据被执行的动作

at st+1

rt

的输出下一个状态 ，并将当前动作的奖励

（Reward） 反馈给智能体. 智能体的目的就是不断

调整自身决策，尽可能多的获取奖励.
PPO[18] 由 OpenAI在 2017年提出，并将其作为

强化学习的 baseline算法[19].

t ∈ [0,N]

近端策略优化 PPO算法基于 Actor−Critic架

构，由策略梯度算法发展而来，其 Critic网络采用

时间差分法对 值函数进行估计：

At = δt + (γλ)δt+1+ · · ·+ · · ·+ (γλ)N−t+1δt−1 （1）

δt = rt +γV(st+1)−V(st) （2）

At t

γ λ δt

rt t

V(st) t δt rt

γV(st+1) V(st)

γV(st+1)−V(st)

式 中 ： 为 时 刻 下 的 状 态 −动 作 对 的 优 势

（Advantage）， 为折扣因子， 为衰减因子， 为时

间差分误差（TD-Error）， 为 时刻下执行当前动作

的奖励， 为 时刻下价值函数， 为 与价值函

数与折扣因子的乘积 跟价值函数 的差

值 的和.

θ′ θ

PPO算法中的 Actor网络为 On-Policy算法 ，

引入重要性采样（Importance Sampling），即可以使

用 采样到的数据去训练 ，这样就可以实现采样

一次，更新多次[20].
为满足重要性采样条件，PPO算法需要对策

略进行约束保证其差异很小 . 对策略的约束多采

用裁剪方式进行，可通过设置调节超参数，通过对

超出限定前后策略差异上限范围的差异进行裁剪

基于 PPO网络结构的多机器人协同搬运，如图 3
所示.

文中所述的多机器人强化学习控制系统设

定，主要包括：状态空间、动作空间以及奖励函数.
状态空间为机器人提供清晰和高效的决策基础，

直接关系到强化学习算法学习效率和效果 . 为了

分析多机协同搬运柔顺性问题，本文将机器人的

各关节角度、末端位置、关节角速度、关节角加速

度、末端速度、末端加速度和末端 6维力数据作为

观测值.
动作空间作为强化学习动作神经网络的输出

结果，主要对机器人进行运动控制. 动作空间首先

要提供实现预期目标的可能性，避免在任务空间

中出现无法到达的奇异点 . 另外动作空间应该尽

量简单，降低训练的难度，提升算法的性能.
奖励函数作为被控对象运行状态的检验，是

设定的评价控制策略好坏的标准 . 奖励函数的值

与算法控制效果正相关，即算法控制越好，奖励函

数的值越大. 在多机器人协同搬运中，首先要保证

机器人能够完成完整的搬运轨迹，轨迹完成度越

张树忠等：异构三机器人协同搬运的高柔顺性研究 · 2051 ·



高，获得的奖励越大，如式 (3)所示：

reward = rTraj+ rPos+ rv+ rω + rforce （3）

rTraj rPos
rv

rω
rforce

式中， 为轨迹完成度奖励； 为位置奖励函

数，与机器人末端位置差值相关； 为机器人末端

速度奖励函数，与机器人末端速度相关，反应运动

平稳性； 为关节速度奖励函数，与机器人各关节

速度变化相关，表征机器人运动平顺性； 为内

力控制奖励函数.
除了轨迹完成度奖励为正外，其余均为负值 .

正轨迹完成度为期望值，有利于引导机器人实现

完整轨迹. 其余指标为非期望值，负值（惩罚）有利

于机器人快速收敛.
通过设置合适的随机噪声，不仅可以模拟真

实环境，从而提升算法的实验可迁移性，还能提升

强化学习算法训练后的鲁棒性 [21]. 因此本文添加

两种噪声 . 一是力信号噪声，二是延迟噪声 . 基于

被搬运物体的受力在 10 N左右，因此按受力 5%
大小选择力信号噪声在 [–0.25 N, 0.25 N]内随机

取值 . 自上位机发送动作空间内最长位置移动信

号计时，到机器人完成运动结束计时，计时时长为

100 ms左右，因此延迟噪声根据动作空间内选择

概率以 50%、30%、20% 的概率选择 0、50、100 ms
的延迟.

 3    三机器人协同搬运仿真分析

 3.1    仿真环境设置

采用 Gym[22] 创建机器人强化学习环境，调用

SB3（Stable Baselines 3）部署 PPO算法，PPO算法的

主要超参数设置如下 ，学习率为 3×10–4， γ=0.99，
clip_range=0.2，训练总时长 179 h. 通过通讯接口实

现 Gym环境与机器人仿真器 CoppeliaSim[23] 进行通

讯与控制 . 采用 Bullet Physics v2.83物理模拟引擎

作为机器人的动力学模拟计算[24]，并使用CoppeliaSim
的逆运动学模块进行运动规划.

在 CoppeliaSim中建立异构三机器人协同搬运

的仿真环境，如图 4所示. 设置三个异构机器人共

同夹持一块边长为 30 cm，厚度 1.5 cm，质量为 1 kg
的正三角体. 机器人 2和机器人 3的末端分别加装

力传感器，其末端最大速度约为 0.7 m·s–1，同时设

定控制周期为 0.05 s.
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图 4    三机器人协同搬运仿真环境

Fig.4    Tri-robot collaborative handling simulation scenario
 

设置被搬运物体质心的期望轨迹，如图 5所

示 . 轨迹的前半段为矩形下降，后半段为圆形上

升，从而检验三机器人协同搬运的柔顺性.
 3.2    仿真结果及分析

仿真中，设定机器人 1采用位置控制，机器人
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2和机器人 3对比采用力控制和强化学习两种控

制策略. 鉴于三机器人之间的力关联复杂，而且各

个机器人与被搬运物体之间并非刚性约束，力控

制下无法完成期望轨迹. 因此，在轨迹前半部分对

机器人 2和机器人 3末端力传感器采集的数据，添

加不大于 1的安全系数，从而降低因非运动方向

受力对运动的影响，后半段则取消该系数.
限于篇幅，本文仅展示部分仿真分析结果，即

在不同控制策略下，被搬运物体的质心位置曲线

（图 6），机器人 2的末端速度曲线（图 7）和典型关

节的角速度曲线（图 8），以及三机器人协同搬运的

仿真结果对比（表 1）.
具体地，两种控制方式下，针对被搬运物体的

质心位置与期望轨迹如图 6所示. 可以看出，强化

学习下质心位置变化最为平顺，与期望轨迹最

接近.
X 方向上，力控制的轨迹误差相对于期望轨

迹，在 0～10 s，由 2% 逐渐增加到约 16.2%；10～
17  s， 在 8%～ 30% 内 波 动 ； 17  s之 后 逐 步 从 约

2% 扩大到 40% 以上 . 而强化学习控制的轨迹误

差，仅在 2～7 s和 25 s之后为 2%～3%，其余均在

2% 以下 . 总之，强化学习的最大轨迹误差仅为力

控制下的 7.1%，力控制下最大误差 25.5 mm，平均

误差 8.4 mm，强化学习下最大误差 1.8 mm，平均误

差 0.7 mm.
Y 方向上，0～15 s，力控制的轨迹误差由最大

约 38% 下降到约 5%；15 s之后轨迹误差从 0.2%～

20% 内波动逐步增加到 40%，之后逐步衰减到

10% 以内 . 而强化学习的轨迹误差在 6～10 s和
22～ 25  s时在 2%～ 3% 内波动 ，其余均在 1% 以

内，其最大值仅为力控制的 8.4%，力控制下最大误

差 20.2 mm，平均误差 8.8 mm，强化学习下最大误

差 1.7 mm，平均误差 0.8 mm.
Z 方向上，力控制下的轨迹误差从约 2% 逐步

增加到约 23%. 而强化学习的轨迹误差均在 1% 以

内，其幅值仅为力控制下的 5.4%，效果更明显，力

控制下最大误差 14.9 mm，平均误差 7.1 mm，强化

学习下最大误差 0.8 mm，平均误差 0.4 mm
对于机器人 2的末端速度变化幅度，从图 7可

知，强化学习的速度变化最平缓，控制效果更优 .
具体地，在 X 方向上，强化学习的速度最大变化幅

度仅为力控制下的 20.7%，强化学习下与期望速度

平均误差为 2.4 mm·s–1 优于力控制下 7.0 mm·s–1；
Y 方向上，强化学习的速度最大变化幅度仅为力控

制的 35.9%，强化学习下与期望速度平均误差为

2.0 mm·s–1 优于力控制下 5.3 mm·s–1；Z 方向上，强

化学习下与期望速度平均误差为 2.2 mm·s–1 优于

力控制下 2.7 mm·s–1，虽然强化学习下的速度最大

变化幅度仅为力控制的 63.9%，但需要指出的是，

其仅出现在物体运动的初始阶段，且后续运动的

速度变化仍然展现出良好的优势.
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图 6    被搬运物体质心位置仿真图. (a) X 方向; (b) Y 方向; (c) Z 方向

Fig.6    Simulated centroid position of the handled object: (a) direction X;
(b) direction Y; (c) direction Z
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关节角速度的变化同样是三机器人协同搬运

系统柔顺性的重要指标，针对机器人 2，以典型关

节 2、4、5为例. 从图 8所示的关节数据可以看出，

力控制下的关节角速度，大幅变化持续存在于整

个搬运过程. 强化学习控制下，无论哪个关节都展

现出更好的柔顺性，特别是对于关节 2的速度变

化，强化学习的速度变化在 0.9°·s–1～2.5°·s–1 之间，

力控制的速度变化在 0.6°·s–1～7.1°·s–1 之间，由此

可见强化学习的最大幅度仅为力控制下的 35.2%.

 4    三机器人协同搬运实验研究

 4.1    实验平台搭建

当前，强化学习从仿真到现实的 Sim-to-Real

问题，尚未有简而有效的方法，其迁移效果较差 .

为能在现实中复现其效果，本文首先依照仿真环

境搭建实验平台，然后采用行为克隆 [25]（Behavior

cloning）仿真中的信息，再映射到执行动作信息

中，从而共同生成有效的控制信息，以对强化学习
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图 7    机器人 2的末端速度仿真图. (a) X 方向; (b) Y 方向; (c) Z 方向

Fig.7      Simulated  velocity  of  robot  2’s  end  effector:  (a)  direction  X;
(b) direction Y; (c) direction Z

 

Force control
RL control

0 5 10 15 20 25 30 35
−10

−5

0

5

10

Jo
in

t 
2
 a

n
g
u
la

r 
v
el

o
ci

ty
/(

°·
s−

1 )

Time/s

(a)

Force control
RL control

0 5 10 15 20 25 30 35
−30

−10

10

−20

0

20

30

Jo
in

t 
5
 a

n
g
u
la

r 
v
el

o
ci

ty
/(

°·
s−

1 )

Time/s

(c)

Force control
RL control

0 5 10 15 20 25 30 35
−5.0

−2.5

0

2.5

5.0

Jo
in

t 
4
 a

n
g
u
la

r 
v
el

o
ci

ty
/(

°·
s−

1 )
Time/s

(b)

图 8    机器人 2典型关节角速度仿真图. (a) 关节 2; (b) 关节 4; (c) 关节 5

Fig.8      Simulated angular velocity of robot 2’s typical joint: (a) joint 2;
(b) joint 4; (c) joint 5

 

表 1    三机器人协同搬运仿真结果对比

Table 1    Comparison of simulation results of tri-robot collaborative handling

Method
Position error of

object/mm
Position average
error of object/mm

Fluctuation of robot 2
terminal velocity/(mm·s–1)

Fluctuation of robot 2 of
average error terminal
velocity/(mm·s–1)

Fluctuation of angular
velocity of robot 2/(°·s–1)

X Y Z X Y Z X Y Z X Y Z Joint 2 Joint 4 Joint 5

Force control 25.5 20.2 14.9 8.4 8.8 7.1 59.8 42.6 19.7 7.0 5.3 2.7 7.1 4.9 29.9

Reinforcement
learning 1.8 1.7 0.8 0.7 0.8 0.4 12.4 15.3 12.6 2.4 2.0 2.2 2.5 2.6 11.2
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多机协同算法进行可行性验证 . 具体方法为当实

际输出与期望轨迹进行实时比对，当数值差距过

大时切换仿真数据驱动 . 所搭建的三机器人协同

搬运实验平台，如图 9所示.
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图 9    三机器人协同搬运实验平台

Fig.9    Tri-robot collaborative handling experimental platform
 

在上述实验平台中，机器人 1采用大象六自

由 度 协 作 机 器 人 （ER）myCobot  280， 末 端 负 载

0.25 kg，重复定位精度±0.5 mm；机器人 2采用遨博

（AUBO）六自由度协作机器人 i5，末端负载 5 kg，
重复定位精度±0.02 mm；机器人 3采用大象四自由

度协作机器人（ER）myPalletizer，末端负载 0.25 kg，
重复定位精度±0.5 mm；采用坤维科技的六维力传

感器（KWR75B）实时采集机器人 2的末端接触力；

通过上位机程序，机器人的实时控制周期，经实验

测试约为 500 ms.
用于实验的被搬运物体与仿真中一致，均为

边长 30 cm、厚度 1.5 cm、质量 1 kg的正三角体.
 4.2    实验结果及分析

因实验条件及机器人兼容性所限，对机器人

3采用仿真数据驱动 . 同样限于篇幅，仅展示部分

实验研究结果，即主要分析被搬运物体和机器人

2在力控制与强化学习下的代表性实验结果.
两种控制方式下，被搬运物体的质心位置与

期望轨迹，如图 10所示.
由图 10可知，X 方向上，0～50控制周期内，力

控制的轨迹误差从 4% 逐渐增加到 17.4%.  50～
200控制周期后逐步减小到 5% 内，200～400控制

周期内在 1%～30% 内波动，400控制周期后逐步

扩大到 50% 左右 . 而强化学习的轨迹误差在 40～
120和 500～ 630控制周期内的误差在 3%～ 4%，

200～280控制周期内的误差约为 5%. 可以看出，

强化学习的位置变化更为平顺，与期望轨迹跟踪

误差在 2.4 mm内，仅为力控制的 9.3%，力控制下

最大误差 25.9 mm，平均误差 8.6 mm，强化学习下

最大误差 2.4 mm，平均误差 1.1 mm，效果非常明显.

Y 方向上，0～40控制周期内，轨迹误差逐步增

加到 39%. 40～120控制周期内，轨迹误差在 30%
以上 ， 120～ 400控制周期的轨迹误差在 10%～

30% 内波动 . 400控制周期后，从 2% 逐步增加到

40%，随后衰减到约 10%. 而强化学习下在 0～
40控制周期的轨迹误差约为 3%～5%，120～200控

制周期内高于 4%，280～360控制周期内高于 3%，

其余控制周期误差在 2% 以内，力控制下最大误

差 20.3 mm，平均误差 8.8 mm，强化学习下最大误

差 2.3 mm，平均误差 1.1 mm. 可以看出，强化学习

下位置变化相对小，其幅值仅为力控制的 11.3%.
Z 方向上，力控制下轨迹误差由 10% 逐步增

加到约 35%. 而强化学习下轨迹误差维持在 9%～

13%. 力控制下最大误差 22.4 mm，平均误差 14.0 mm，

强化学习下最大误差 8.1 mm，平均误差 7.0 mm总

之，强化学习下位置变化相对较多，其幅值为力控

制的 36.2%，但也展现出一定的有效性.
另外，两种控制方式下，机器人 2的末端速度

实验对比，如图 11所示.
从图 11可知，强化学习的速度变化最平缓，控
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图 10    被搬运物体质心位置实验图. (a) X 方向; (b) Y 方向; (c) Z 方向

Fig.10      Measured centroid position of the handled object:  (a)  direction
X; (b) direction Y; (c) direction Z
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制效果更优. 具体地，X 方向上，强化学习的速度变

化范围普遍在 2.3 mm·s–1 以内，力控制下的速度变

化在 0.9～7.2 mm·s–1 之间 . 由此可见，强化学习的

速度最大变化幅度仅为力控制下的 31.9%.
Y 方向上，强化学习的速度最大变化幅度仅为

力控制下的 60.61%；Z 方向上，强化学习的速度变

化在 1.4 mm·s–1 以内，力控制的速度变化在 2.6 mm·s–1

以内 . 虽然强化学习下的速度最大变化幅度仅为

力控制的 53.8%，但需要指出的是，其仅出现在物

体运动的初始阶段.
同样的，选择机器人 2的典型关节 2、4、5进

行分析 . 两种控制方式下机器人 2关节数据对比，

如图 12所示 . 从图 12所示的关节数据可以看出，

力控制下的关节角速度，大幅度振荡变化，强化学

习控制下，无论哪个关节都展现出更好的柔顺性. 特

别是关节 2，强化学习的速度变化在 0.08°·s–1～0.1°·s–1

之间，力控制的速度变化在 0.12°·s–1～0.4°·s–1 之

间，强化学习下速度变化普遍是力控制下 47% 左

右，其最大幅度仅为力控制下的 25.0%.

三机器人协同搬运的实验结果，对比于表 2所

示. 从表中可以看出，强化学习的控制效果更优.
 
 

表 2    三机器人协同搬运实验结果对比

Table 2    Comparison of experiment results of tri-robot collaborative handling

Method
Position error
of object/mm

Position average
error of object/mm

Fluctuation of robot 2
terminal velocity/(mm·s–1)

Fluctuation of robot 2 of
average error terminal
velocity/(mm·s–1)

Fluctuation of angular
velocity of robot 2/(°·s–1)

X Y Z X Y Z X Y Z X Y Z Joint 2 Joint 4 Joint 5

Force control 25.9 20.3 22.4 8.6 8.8 14.0 7.2 3.3 2.6 0.7 0.5 0.3 0.4 0.6 1.9

Reinforcement
learning 2.4 2.3 8.1 1.1 1.1 7.0 2.3 2.0 1.4 0.3 0.2 0.2 0.1 0.3 1.1
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图 11    机器人 2的末端速度实验图. (a) X 方向; (b) Y 方向; (c) Z 方向

Fig.11      Measured  velocity  of  robot  2’s  end  effector:  (a)  direction X;
(b) direction Y; (c) direction Z
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图 12    机器人 2典型关节角速度实验图. (a) 关节 2; (b) 关节 4; (c) 关

节 5

Fig.12    Measured angular velocity of robot 2’s typical joint: (a) joint 2;
(b) joint 4; (c) joint 5
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 5    结论

面向异构三机器人协同搬运柔顺性问题，提

出了基于近端策略优化（PPO）的强化学习控制方

法，开展了两种控制方法（力控制与强化学习控

制）的异构三机器人协同搬运仿真分析与实验研

究，实现了异构多机器人协同搬运的柔顺性提升.
基于强化学习 PPO算法，设计出三机器人协

同搬运的强化学习控制策略，通过建立 Gym与

CoppeliaSim仿真环境，分别进行了力控制和强化

学习控制的对比仿真 . 仿真结果表明强化学习控

制效果更优.
通过搭建异构三机器人协同搬运的实验平

台，将力控制与强化学习控制部署到实验平台上

进行可行性验证 . 实验结果表明强化学习在本文

搭建的实验条件和场景下多机协同搬运中的有效

性，复杂条件及多场景、复杂任务中仍需继续探索.
下一步研究，将强化学习方向提出的新算法

应用到机器人控制领域，并对比分析不同强化学

习算法的有效性；在强化学习迁移到现实空间方

向上可以结合数字孪生，使用虚拟空间数据训练，

物理空间控制应用. 特别地，将丰富异构多机器协

同搬运的实验对象、实验场景. 尤其是搭建与仿真

环境完全一致的实验场景，从而增强研究分析结

果的可比性.
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