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ABSTRACT The Industrial Internet is an important part of the national critical information infrastructure. Enabling comprehensive
interconnectivity among humans, machines, and Internet of Things devices allows the formation of a new architecture of industrial
production, manufacturing, and service. However, a great number of security vulnerabilities exist in industrial devices, especially legacy
industrial devices. They can be maliciously exploited during device interconnection, causing severe security incidents or economic
losses. Among the major security threats facing the Industrial Internet today, botnet attacks are particularly concerning. By exploiting
zero-day vulnerabilities (e.g., buffer overflows in the programmable logic controller firmware) and propagating and deploying
polymorphic malware, attackers can covertly hijack a large number of networked devices and recruit compromised devices into botnets
to launch coordinated large-scale attacks on target networks. However, traditional botnet detection methods (e.g., rule-, threshold-, and
machine learning-based methods) have significant limitations. Rule- and threshold-based botnet detection techniques, which depend

heavily on static signatures (e.g., known malicious Internet Protocol lists) or predefined detection thresholds, face challenges in adapting
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to the dynamic nature of complex network environments, ultimately leading to constrained detection capabilities. Meanwhile, it is not
easy for traditional machine learning-based detection techniques to process complex and high-dimensional network communication
features effectively, resulting in poor detection performance. Deep learning-based detection techniques, which generally treat network
traffic as isolated time-series or spatial data, fail to model the topological dependencies between devices in complex communication
networks; this is a key limitation in identifying coordinated botnet behaviors (e.g., synchronized command-and-control communications).
To address these challenges, we leverage the pervasive device-to-device connectivity in the Industrial Internet by modeling the
communication network as a graph structure, where nodes represent devices and edges represent communication relationships between
devices to achieve accurate topology representation. Based on the graph model, we propose a novel approach for detecting botnet
anomalous communication based on graph neural network (GNN)-enhanced communication features. First, our method extracts fine-
grained node and communication features from network traffic data and employs a GNN to propagate and aggregate node information
across the entire network. By capturing topological dependencies, the method can generate more accurate aggregated node feature
representations. In this step, the multihead attention mechanism is integrated with the GNN to perform weighted aggregation of node
features in diverse ways, enhancing the flexibility of node feature representation. Afterward, the aggregated node features are used to
enhance communication features. Finally, a multilayer perceptron model is used to classify the enhanced communication features into the
normal or abnormal categories, thus achieving automatic detection of botnet anomalous communication. To validate the effectiveness of
the proposed approach, we conducted a series of experiments on a public large-scale dataset, CTU-13, which includes 13 distinct botnet
attack scenarios. We compared the proposed approach against a group of baseline methods, including a convolutional neural network
(CNN), long short-term memory (LSTM), CNN-LSTM, and the recently proposed Bot-DM method, across a comprehensive set of
metrics such as accuracy, recall, precision, and F1-score. The experimental results demonstrate that our approach outperforms existing
botnet detection methods in detection performance.

KEY WORDS security of Industrial Internet; botnet; anomalous communication detection; graph neural networks; deep learning
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Table 1 Bot-GECF model training algorithm

Algorithm 1. Bot-GECF model training algorithm

Input: the original dataset 7, initial model parameters 6;;, the number of graph convolutional layers K, the maximum number of training epochs M,
early stopping rounds NUM, the early stopping threshold §, hyperparameters @ &, y and 7.

Output: the optimal model parameters 6.

1:  Stepl: Perform combination sampling on 77, to obtain a balanced training set 7" ;

2:  Step2: Construct G(V,A) based on 7, and extract the initial node and communication features.

3:  Step3: Initialize parameters: 6 < Oiyit, Lavg < 0, Lavg - pre < 0;
4: Step4: for epoch =1 to M do:
S. Step5: for k=1 to K do:

6: VE a'(Vk’l Wf +Avkl Wf + Bk); //Node feature aggregation and update via GNN propagation.

7. end

8:  Step6: V< (Aﬁl V5, ,Atth(VK)) Wo; //Node feature fusion via multihead attention.

9: Step7: ¢l —PReLU (LayerNorm (Cf,ch + bc)); //Normalize initial communication features.
10: Step8: Chp — (Vm, Vi, C,lml,); //Enhance communication features via node features.
11: Step9: pfm — softmax(MLP(E'ﬁ,m)); //Abnormal communication identification via MLP

12: Step10: —E(pinn’y{nn) < —a(l - Pinn)y)’f;m log (pinn) ~(1=@) phy (1 —yf,,,,)log (1 - pfnn); //Calculate the loss value.

13: Step11: Laygpre «— Lave, Lavg < (1/ \TI)Zm,,,,/L(pfm,yfm); //Loss normalization.

14: Step12: if |Lavg = Lavg - prc|remains below ¢ for NUM consecutive rounds then: //Check for early stop

15: break;

16: else:

17: 0 < 0 —nVgLayg; //Update model parameters via gradient descent.
18: end

19: end

20: Step13: return § « 6; /Return the optimal model parameters.
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Table 2 Overview of CTU-13 dataset

Scenario Total flows (Perceﬁsége;fqg\tﬁ flows) Bot Scenario Total flows (Percerﬁzézect)fﬂt(c))\t,: flows) Bot
1 2824636 39933 (1.41%) Neris 8 2954230 5052 (0.17%) Murlo
2 1808122 18839 (1.04%) Neris 9 2753884 179880 (6.53%) Neris
3 4710638 26759 (0.57%) Rbot 10 1309791 106315 (8.12%) Rbot
4 1121076 1719 (0.15%) Rbot 11 107251 8161 (7.61%) Virut
5 129832 695 (0.54%) Virut 12 325471 2143 (0.66%) NSIS.ay
6 558919 4431 (0.79%) Menti 13 1925149 38791 (2.01%) Virut
7 114077 37(0.03%) Sogou

F3 AREFH Bot-GECF BN M: e
Table 3 Detection performance of Bot-GECF under different scenarios

Scenario Precision Recall F1-Score Accuracy Scenario Precision Recall F1-Score Accuracy
1 0.998211 0.998698 0.998454 0.998608 8 1 0.998912 0.999456 0.998912
2 0.991306 0.998249 0.994765 0.998249 9 0.996960 0.998739 0.997849 0.998739
3 0.993201 0.998384 0.995786 0.998384 10 0.999875 0.999781 0.999828 0.999781
4 0.924731 1 0.960894 1 11 1 0.998775 0.999387 0.998775
5 1 1 1 1 12 0.990683 0.981538 0.986090 0.981538
6 0.996413 1 0.998203 1 13 0.998750 0.998417 0.998583 0.998417
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Fig.3 Detection performance comparison of algorithms based on fine-grained and basic features
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Fig.4 Detection performance comparison of algorithms based on initial and enhanced communication features
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Influence of SMOTE-Tomek sampling on detection performance
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Table 4
Without SMOTE-Tomek sampling With SMOTE-Tomek sampling
Scenario
Precision Recall Accuracy Fl-score Precision Recall Accuracy Fl-score
1 0.952924 0.999919 0.999283 0.975856 0.998211 0.998698 0.998608 0.998454
2 0.962611 1 0.999550 0.995 0.991306 0.998249 0.998249 0.994765
4 0.957921 1 0.999899 0.978508 0.924731 1 1 0.960894
6 0.990728 1 0.999922 0.995342 0.996413 1 1 0.998203
8 0.934385 0.999456 0.999853 0.965825 1 0.998912 0.998912 0.998456
12 0.530612 1 0.994111 0.693333 0.990683 0.981538 0.981538 0.986090
Average 0.888197 0.999896 0.998770 0.933977 0.983557 0.996233 0.996218 0.989477
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Table 5

Influence of multihead attention on detection performance
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With multi-head attention

Without multi-head attention
Scenario
Precision Recall Accuracy Fl-score Precision Recall Accuracy Fl-score
4 0.932530 1 0.998368 0.965087 0.924731 1 1 0.960894
5 1 0.996296 0.999974 0.998145 1 1 1 1
6 1 0.994240 0.999952 0.997112 0.996413 1 1 0.998203
10 0.999875 0.999687 0.999964 0.999781 0.999875 0.999781 0.999781 0.999828
11 1 0.998775 0.999907 0.999387 1 0.998775 0.998775 0.999387
12 0.993671 0.966154 0.999734 0.979719 0.990683 0.981538 0.981538 0.986090
Average 0.987679 0.992525 0.999650 0.989872 0.985284 0.996682 0.996682 0.990734
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Fig.5 Detection performance comparison of different approaches
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Table 6 Detection performance comparison of Bot-GECF and Bot-DM

Bot-DM Bot-GECF
Scenario
Precision Recall Accuracy Fl-score Precision Recall Accuracy Fl-score
1 0.992 0.9945 0.9947 0.9935 0.998211 0.998698 0.998608 0.998454
2 0.995 0.995 0.9964 0.995 0.991306 0.998249 0.998249 0.994765
3 0.997 0.9985 0.9984 0.998 0.993201 0.998384 0.998384 0.995786
9 0.987 0.9905 0.99 0.989 0.996960 0.998739 0.998739 0.997849
13 0.9795 0.9885 0.9896 0.9835 0.998750 0.998417 0.998417 0.998583
Average 0.9901 0.9934 0.99382 0.9918 0.995686 0.998497 0.998479 0.997087
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