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摘    要    工业互联网中的传统工业设备存在大量安全漏洞，在联网过程中易受僵尸网络攻击，其通过恶意控制大量联网设

备，实现对目标网络的大规模协同攻击. 传统基于规则或阈值的检测方法过度依赖静态签名或人工阈值设定，很难适应动态

变化的网络环境；传统机器学习技术对复杂网络高维通信特征的处理能力有限，导致检测能力受限；基于深度学习的检测技

术通常将网络流量视为时间序列或空间数据进行处理，无法对设备拓扑依赖关系进行建模，因而难以识别僵尸网络协同攻

击. 为了解决上述局限性，本文采用图结构准确建模复杂通信网络拓扑结构，并提出一种基于图神经网络增强通信特征的僵

尸网络异常通信检测技术. 首先从网络流量数据中挖掘细粒度的节点特征与通信特征；然后通过图神经网络的信息传播与聚

合机制，获得准确的节点聚合特征表示；再用节点聚合特征增强通信特征，实现准确的异常通信检测；最后在大型公开数据

集 CTU-13上进行了综合实验，验证所提出方法的有效性. 实验结果表明所提出的方案与现有的卷积神经网络、长短时记忆

网络及其融合模型等异常检测算法，以及最新提出的 Bot-DM僵尸网络检测方法相比，能更准确地检测僵尸网络异常通信.

关键词    工业互联网安全；僵尸网络；异常通信检测；图神经网络；深度学习

分类号    TN915.08

Detection of Botnet anomalous communication based on GNN-enhanced communication
features

WANG Yunhao1,2)，HU Yan1,2)✉，HUANGFU Wei1,2)，HUO Jiahao1,2)

1) School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China

2) Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China

✉Corresponding author, E-mail: huyan@ustb.edu.cn

ABSTRACT    The  Industrial  Internet  is  an  important  part  of  the  national  critical  information  infrastructure.  Enabling  comprehensive

interconnectivity  among  humans,  machines,  and  Internet  of  Things  devices  allows  the  formation  of  a  new  architecture  of  industrial

production, manufacturing, and service. However, a great number of security vulnerabilities exist in industrial devices, especially legacy

industrial  devices.  They  can  be  maliciously  exploited  during  device  interconnection,  causing  severe  security  incidents  or  economic

losses.  Among the major  security threats  facing the Industrial  Internet  today,  botnet  attacks are particularly concerning.  By exploiting

zero-day  vulnerabilities  (e.g.,  buffer  overflows  in  the  programmable  logic  controller  firmware)  and  propagating  and  deploying

polymorphic malware, attackers can covertly hijack a large number of networked devices and recruit compromised devices into botnets

to launch coordinated large-scale attacks on target networks. However, traditional botnet detection methods (e.g., rule-, threshold-, and

machine  learning-based  methods)  have  significant  limitations.  Rule-  and  threshold-based  botnet  detection  techniques,  which  depend

heavily on static signatures (e.g., known malicious Internet Protocol lists) or predefined detection thresholds, face challenges in adapting 
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to the dynamic nature of complex network environments,  ultimately leading to constrained detection capabilities.  Meanwhile,  it  is  not

easy  for  traditional  machine  learning-based  detection  techniques  to  process  complex  and  high-dimensional  network  communication

features  effectively,  resulting in  poor  detection performance.  Deep learning-based detection techniques,  which generally  treat  network

traffic  as  isolated  time-series  or  spatial  data,  fail  to  model  the  topological  dependencies  between  devices  in  complex  communication

networks; this is a key limitation in identifying coordinated botnet behaviors (e.g., synchronized command-and-control communications).

To  address  these  challenges,  we  leverage  the  pervasive  device-to-device  connectivity  in  the  Industrial  Internet  by  modeling  the

communication network as a graph structure, where nodes represent devices and edges represent communication relationships between

devices  to  achieve  accurate  topology  representation.  Based  on  the  graph  model,  we  propose  a  novel  approach  for  detecting  botnet

anomalous  communication  based  on  graph  neural  network  (GNN)-enhanced  communication  features.  First,  our  method  extracts  fine-

grained node and communication features from network traffic data and employs a GNN to propagate and aggregate node information

across  the  entire  network.  By  capturing  topological  dependencies,  the  method  can  generate  more  accurate  aggregated  node  feature

representations.  In  this  step,  the  multihead attention mechanism is  integrated with  the  GNN to  perform weighted aggregation of  node

features  in  diverse ways,  enhancing the flexibility  of  node feature representation.  Afterward,  the aggregated node features  are  used to

enhance communication features. Finally, a multilayer perceptron model is used to classify the enhanced communication features into the

normal or abnormal categories, thus achieving automatic detection of botnet anomalous communication. To validate the effectiveness of

the proposed approach, we conducted a series of experiments on a public large-scale dataset, CTU-13, which includes 13 distinct botnet

attack scenarios.  We compared the proposed approach against  a  group of  baseline methods,  including a  convolutional  neural  network

(CNN),  long  short-term  memory  (LSTM),  CNN-LSTM,  and  the  recently  proposed  Bot-DM  method,  across  a  comprehensive  set  of

metrics such as accuracy, recall, precision, and F1-score. The experimental results demonstrate that our approach outperforms existing

botnet detection methods in detection performance.

KEY WORDS    security of Industrial Internet；botnet；anomalous communication detection；graph neural networks；deep learning

工业互联网的蓬勃发展使得冶金、采矿、能源

等智能制造领域的信息化与智能化水平不断提

升 [1]. 持续推进我国由制造大国向制造强国转变 .
智能制造设备的互联互通、工业控制网络与生产

管理网络的高度集成、工厂网络与互联网的广泛

融合，使新一代智能制造体系所依赖的信息网络

基础设施具备灵活的网络架构，并促进了实时工

业控制、智慧化管控、产业链协同等创新制造模

式的发展. 然而，由于智能制造设备本身存在较多

的安全漏洞，大批设备的联网使工业互联网面临

严峻的安全形势. 一旦设备遭受恶意攻击，很可能

导致严重的安全事故或经济损失[2]. 僵尸网络是目

前工业互联网面临的主要安全威胁之一[3]，其通过

控制大量受感染设备对目标工业网络发起协同攻

击，从而破坏生产流程或窃取机密数据 . 因此，准

确检测僵尸网络异常通信是后续采取有效防护措

施的前提，也是保障工业互联网安全的重要手段.
僵尸网络产生的异常通信通常混杂在大量正

常网络通信中，且呈现突发性、动态性、伪装性等

特征[4−5]，导致传统基于阈值或规则匹配[6−7] 的方法

很难对其进行有效检测. 因此，研究者们提出了基

于机器学习的检测技术，如决策树和支持向量

机 [8]、多层机器学习分类器 [9] 等，但此类方法对高

维复杂通信特征的自动选择和处理能力有限，导

致检测效果不佳. 另一些学者将深度学习技术应用

于僵尸网络检测，如卷积神经网络（Convolutional
neural  network，CNN） [10]、长短期记忆网络 （Long
short-term memory，LSTM） [11] 以及融合模型 CNN–
LSTM[12] 等，以实现高维特征的自动选择和非线性

处理 [13−14]，提升检测效果 . 但大部分深度学习技术

仅关注设备通信产生的网络流量特征 [15]，忽略了

设备之间的网络拓扑关系，使僵尸网络通信特征

的表示仍不够准确，导致模型检测能力依然受限.
由于设备互联形成典型的图结构，设备及其

通信关系可被建模为图的节点和边，因此图模型

非常适用于描述设备拓扑关系 [16−17]. Zhou等 [18] 采

用图结构建模设备拓扑关系，并利用图神经网络

(Graph neural network，GNN)和图卷积操作，实现网

络中节点信息的传播与聚合，从而识别僵尸网络

节点. 该方法主要关注网络节点特征，而未考虑通

信特征及其与节点特征的关联关系，导致检测精

度受限. Meng等 [19] 同样利用图神经网络检测僵尸

网络，但仅关注连接数和平均通信时长等基本通

信特征，未深入挖掘更多细粒度的网络通信特征，

从而影响检测精度 . Zhao等 [20] 指出入度和出度等

基本图特征仅能粗粒度地表示设备间连接关系，
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无法细致刻画设备间的复杂通信模式. Wu等[21] 将

网络流量转换成图像表示，并结合数据包负载分

析，实现僵尸网络异常通信检测 . 然而，解析大量

数据包的负载信息，必然会消耗大量的计算资源

和时间，显著增加检测成本 . 针对上述问题，本文

提出了一种基于图神经网络增强通信特征的僵尸

网络异常通信检测模型 (Botnet anomalous commun-
ication detection based on GNN-enhanced communica-
tion features, Bot-GECF). 首先用图模型建模设备拓

扑结构，并抽取细粒度的节点特征和通信特征，然

后利用图神经网络实现网络内节点特征的传播和

聚合，得到准确的节点聚合特征表示，再用其增强

通信特征，形成准确的通信特征表示，最后利用多

层感知机 (Multilayer perceptron, MLP)模型对增强

的通信特征进行分类，实现僵尸网络异常通信检

测. 本文的主要创新点如下：

(1)基于原始网络通信数据提取多维细粒度节

点特征与通信特征，较全面地刻画设备历史行为

模式与单次通信模式；

(2)运用图模型准确建模设备拓扑结构，基于

图神经网络中节点信息的传播与聚合机制，有效

捕捉复杂通信网络中设备之间的局部和全局依赖

关系；

(3)利用通信双方节点的历史行为特征增强单

次通信特征，有效提升检测模型对单次通信异常

的识别能力.

 1    问题建模

G(V, A) V
N {v1, · · · ,vN}

A ∈ RN×N

vm vn 1 ⩽ m,n ⩽ N

A amn

D = diag(d1,d2, · · · ,dN) dm =∑N

n=1
amn A D

vm vn

l (l ⩾ 1) el
nm yl

mn ∈
{0,1} yl

mn = 0 el
nm

僵尸网络由一系列受恶意操控的设备组成，

并混杂在大量正常设备中形成复杂网络 . 图 1展

示了僵尸网络通信模型，红色与黑色节点分别代

表僵尸设备和正常设备，僵尸设备能与其他僵尸

设备或正常设备进行恶意通信 . 本文将该网络建

模为通信图模型 ，其中 为节点集合，共包

含 个独立节点 ，每个节点对应一台联

网设备 .  为邻接矩阵，其所有对角线元素

均为 1. 当节点 和 ( )之间存在至少

一次通信，则 的元素 为 1，否则为 0. 同时，用

表示节点的度矩阵，其中

. 用 和 便可表示通信网络的拓扑结构.

此外，网络中任意源节点 到任意目的节点 的

第 次通信表示为 ，并对应一个标签

.  表示 为正常通信，否则为僵尸网络

异常通信.

 

Normal node

Botnet node

Normal traffic

Abnormal traffic

图 1    正常网络嵌入僵尸网络的示意图

Fig.1    Example of a normal network embedded with a P2P botnet
 

C
为了准确识别僵尸网络异常通信，本文构建

了一个分类器 ，实现单次通信到类别的映射 . 构
建分类器的过程可建模为以下优化问题：

θ̂ = argmin
θ
L(θ,G) （1）

θ C G

L
C θ̂

其中， 为模型 的所有可训练参数， 是待识别的

网络通信图. 优化的目标是通过最小化损失函数

来获得模型 的最佳参数 ，从而构建最优分类器.

 2    基于图神经网络增强通信特征的僵尸
网络异常通信检测模型

 2.1    模型概览

基于上述问题模型，本文提出一种基于图神

经网络增强通信特征的僵尸网络异常通信检测模

型 Bot-GECF，其总体架构如图 2所示 . 首先，基于

原始通信数据，以网络设备为节点、设备间通信关

系为边，构建网络通信图，并为每个节点和每次通

信分别抽取细粒度的初始特征向量. 然后，采用图

神经网络和多头注意力机制生成节点聚合特征向

量，并用其增强通信特征. 最后，利用 MLP模型对

增强的通信特征向量进行自动分类，实现僵尸网

络异常通信的准确检测.
 2.2    初始特征构建

To

T

XSP

XAV XAP

TM DT

TI DI

PR FR

本文从原始通信数据中抽取与节点相关的细

粒度特征，构建节点初始特征向量. 由于原始通信

数据集 中异常通信占比很小，呈现明显的不平

衡特性 . 因此，本文采用 SMOTE–Tomek方法 [22] 对

其进行过采样和欠采样的组合处理，得到均衡化

的数据集 . 节点主要包含连接特征和流量特征 .
其中，连接特征包括当前节点分别作为源节点和

目的节点时，其自身通信端口的多样性 、对方

节点的多样性 、对方端口的多样性 、一次

通信的平均时间 及方差 、相邻两次通信的平

均时间间隔 及方差 、使用最频繁的协议占比

、协议的变化频率 和连接状态的变化频率
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FS

NC

NB NP

vn

vn ∈ R1×dv

. 本文通过熵值来衡量多样性，低熵值通常表示

存在集中攻击的可能性 . 流量特征包括当前节点

在单位时间窗口内的平均通信连接数 、传输字

节数 和数据包数 . 然后，对不同类型的特征

进行规范化处理，便于模型训练 . 对于类别型特

征，采用标签编码技术 [23] 将其转换为数值特征. 对
于数值型特征，采用 Z-分数[24] 进行标准化处理. 最
后，将规范后的特征进行拼接，为每个节点 生成

对应的初始特征向量 ，如公式 (2)所示.
vn =Norm((XSP,XAV,XAP,TM,DT,TI,DI,PR,

FR,FS,NC,NB,NP)) （2）

dv Norm(·)

T Z VS QS

VD QD S C US

NP

NB NSB RP

RB DP JP
OB OP

el
nm

其中， 为节点初始特征维度， 为向量规范

化函数 . 此外，还需要构建通信特征向量，描述任

意一次通信的属性 . 通信特征同样包括连接特征

和流量特征. 其中，连接特征包括此次通信的持续

时间 、协议类型 、源节点 和端口号 、目的

节点 和端口号 、连接状态 和服务类型 .
流量特征包括此次通信中传输的数据包总数 、

字节总数 、源字节数 、数据包速率 、字节

速率 、数据包大小的方差 和偏度 、字节和

数据包的突发指示 和 . 其中，数据包方差表

示此次通信过程中数据包大小的波动性，数据包

偏度衡量数据包大小分布的偏向性，明显的波动

和偏度都表示可能存在异常 . 突发指示为二值变

量，用于指示此次通信产生的字节数和数据包数

是否超过其对应节点单次通信平均字节数或平均

数据包数的特定倍数. 最后，对这些特征进行规范

化处理和拼接，为每次通信 生成对应的初始特

cl
mn ∈ R1×dc dc征向量 ，如公式 (3)所示，其中 为通信

初始特征维度.
cl

mn =Norm((T,Z,VS,QS,VD,QD,S C,US,NP,

NB,NSB,RP,RB,DP, JP,OB,OP)) （3）

 2.3    基于 GNN的节点聚合特征学习

Vk ∈ RN×dk (1 ⩽ k ⩽ K)

k

Vk
n (1 ⩽ n ⩽ N) vn dk k

K

vn (1 ⩽ n ⩽ N) V0

GNN是一种专门处理图结构数据的深度学习

模型，通过图卷积操作实现相邻节点间的信息传

播与聚合，从而形成融合重要上下文信息的节点

特征. 本文基于 GNN模型学习通信网络中节点的

聚合特征表示 . 具体地，用 表

示第 层所有节点构成的特征矩阵，其任意一行

表示节点 的特征向量， 为第 层的

特征维度， 为图卷积层总数 . 所有节点的初始特

征向量 构成了初始特征矩阵 . 因此，

基于 GNN的节点特征更新过程表示为：

Vk = σ
(
Vk−1Wk

s + ÃVk−1Wk
c +Bk

)
（4）

Wk
s Wk

c Bk k

σ(·)
Ã

其中， 、 和 分别为第 层可训练的残差连

接矩阵、卷积权重矩阵和偏置向量，每一层保留节

点部分原始特征，避免特征同质化， 为激活函

数 (如 ReLU函数等)， 是归一化的邻接矩阵：

Ã = D−1/2 AD−1/2 （5）

 2.4    构建增强的通信特征进行异常识别

h

K

Ai = Atti(VK)

1 ⩽ i ⩽ h h

此外，本文在 GNN训练过程中引入多头注意

力机制 [25]，用不同的方式对输入特征进行加权聚

合，以实现更加灵活的特征表示. 首先，设置 个独

立的注意力头，分别对第 层图卷积层输出的节点

特征进行注意力操作，得到输出 ，其中

. 然后，将 个独立注意力头的输出进行拼
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图 2    Bot-GECF模型总体架构

Fig.2    Architecture of Bot-GECF
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接和线性变换得到最终的节点特征矩阵：

V = (A1, · · · , Ah)WO （6）

WO其中， 是线性变换矩阵，用于将拼接后的特征

空间映射至原特征空间.

cl
mn

然后，基于节点聚合特征向量构造增强的通

信特征向量. 对于任意一个通信初始特征向量 ，

首先对其进行线性变换和 LayerNorm归一化 [26]，

来规范特征分布，提升模型稳定性，并通过激活函

数增强特征的非线性表达能力：

cl
mn
′
= PReLU

(
LayerNorm

(
cl

mnWe+ be
))

（7）

We be
PReLU(x) =max(x,0)+a ·min(x,0)

a cl
mn
′

Vm Vn

V m n

c̄l
mn

其中， 和 分别为可学习的权重矩阵和偏置向

量， 为非线性激活

函数 [27]， 通常取 0.25. 然后，将 与其对应的源

节点和目标节点的聚合特征向量 和 (分别对

应矩阵 的第 行和第 行)进行融合，得到增强的

通信特征向量 ：

c̄l
mn =

(
Vm,Vn, cl

mn
′)

（8）

softmax
c̄l

mn

最后，本文使用 MLP模型 [28] 结合 函数

对 进行异常识别：

pl
mn = softmax(MLP(c̄l

mn)) （9）

pl
mn c̄l

mn其中， 表示 被预测属于僵尸网络通信的概

率. 若大于特定阈值，则判定为异常通信.
 2.5    模型训练

由于原始通信数据集呈现明显的不平衡性，因

此在模型训练过程中采用改进的交叉熵损失函数

(Focal loss)来提高模型对少数类样本的学习效果：

L
(
pl

mn,y
l
mn

)
=−α

(
1−pl

mn

)γ
yl

mn lg
(
pl

mn

)
−

(1−α) pl
mn
γ (

1−yl
mn

)
lg
(
1−pl

mn

)
（10）

yl
mn c̄l

mn pl
mn c̄l

mn

α (0 ⩽ α ⩽ 1)

γ (γ ⩾ 1)

γ

其中， 为样本 的标签， 表示 被预测为

异常样本的概率， 为平衡因子，用于平

衡异常和正常样本的权重，通常取 0.25， 为

调节因子，较大的 值更能降低简单样本的损失贡

献，使训练时更关注分类困难的样本，通常设置为

2. 基于单个样本的分类损失函数值，可以计算全

局平均损失函数值：

Lavg =
1
|T |
∑
m,n,l

L
(
pl

mn,y
l
mn

)
（11）

θ = θ−η∇θLavg θ

η ∇

其中， |·|表示集合的势 . 最后，使用 AdamW优化

器 [29] 来优化全局平均损失函数，获得最优模型参

数 . 优化过程表示为 ，其中 为待训

练参数， 为学习率， 为梯度算子.
本文所提出的 Bot-GECF模型训练算法如

To

θinit K

M NUM δ α h

γ η θ̂

表 1所示 . 算法的输入为原始网络通信数据集 、

模型初始参数 、图卷积层总数 、最大训练轮

数 、早停轮数 、早停阈值 ，超参数 、 、

和 ，输出为模型最优参数 . 第 1～2行对训练集

进行组合采样，并构建通信图模型和初始特征向

量. 第 3行进行参数初始化. 第 4～19行为 GNN训

练过程，其中第 5～8行生成节点聚合特征，第 9～
10行生成增强的通信特征，第 11行识别异常通

信，第 12～13行计算归一化的全局平均损失函

数，第 14～18行依据损失函数更新模型参数直至

训练结束. 第 20行返回模型最优参数.

N

To

M M≪N MN2

O(N2)

N MN2

O(N2)

N

O(N2)

O(N2)

本算法主要分为数据预处理、特征构建及模

型训练三部分 . 假设网络中共包含 个设备，在数

据预处理阶段，对原始网络通信数据集 进行遍

历采样，若任意两个节点之间最大通信次数不超

过 （ ），则网络中通信总数不超过 ，因

此时间复杂度为 ；在特征构建阶段，需要提

取 个节点和最多 次通信的初始特征向量，因

此时间复杂度为 ；在模型训练阶段，每个节

点特征的更新操作最多涉及 个邻居节点的信息

聚合，因此时间复杂度为 . 综合以上分析，算

法 1的总体时间复杂度为 .

 3    实验及分析

 3.1    评估指标

Accuracy
Precision Recall F1

为了综合评估 Bot-GECF模型对僵尸网络异

常通信的检测效果，本文采用准确率 ( )、
精确率 ( )、召回率 ( )和 分数 (F1-
Score)等指标来评价检测精度，各指标定义如下.

Accuracy（1）准确率 ( )表示正确预测类别的样

本数占总样本数的比例：

Accuracy =
TP + TN

TP + TN + FP + FN
（12）

TP TN
FP FN

其中， 和 分别表示被正确预测为异常通信和

正常通信的样本数， 和 分别表示被错误预测

为异常通信和正常通信的样本数.
Precision（2）精确率 ( )表示正确预测为异常通信

的样本数占所有预测为异常通信的样本数的比例：

Precision =
TP

TP + FP
（13）

Recall（3）召回率 ( )表示正确预测为异常通信

的样本数占异常通信总样本数的比例：

Recall =
TP

TP + FN
（14）

F1 F1-Score（4） 分数 ( )为精确率和召回率的调
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和平均值，用于衡量模型的综合性能：

F1-Score = 2× Precision×Recall
Precision + Recall

（15）

 3.2    数据集和实验环境

本实验在捷克技术大学 (Czech Technical Univ-
ersity，CTU)网络安全实验室提供的公开僵尸网络

通 信 数 据 集 CTU-13[30] 上 进 行 . 该 数 据 集 包 含

13个独立场景，每个场景模拟了不同规模网络感

染特定类型僵尸病毒后的通信情况 . 表 2展示了

各场景下僵尸网络通信的数量和占比情况，可以

看出原始数据集呈现明显的不平衡性. 此外，本文

实验所基于的硬件环境为 Intel Xeon Silver 4210R
(2.40 GHz) CPU，NVIDIA GeForce RTX 2080 Ti GPU，

11 GB显存，软件环境为 Ubuntu操作系统，PyTorch
2.5.1深度学习框架，CUDA版本为 11.4.
 3.3    实验对比与分析

首先，为了消除异常流量极端稀疏的场景对

实验结果的影响，本文将场景 7剔除 . 然后，在剩

余 12个场景下，对原始数据集进行组合采样，并

划分为 80% 的训练集和 20% 的测试集. 最后，在训

练集上训练模型，并在测试集上测试模型. 表 3的

结果表明本文提出的 Bot-GECF模型对 12个场景

中僵尸网络异常通信的检测性能都很优秀，各项

指标值都非常接近于 1.
(1)消融实验.
为了验证所提出的细粒度节点特征和通信特

征对僵尸网络异常通信检测的重要性，本文进行

了对比实验. 首先，对节点和通信初始特征进行简

化，仅保留基础通用特征. 节点特征仅保留通信连

接数，通信特征仅保留持续时间、协议类型、源端

口、目标端口、连接状态、服务类型、数据包总

数、字节总数和源字节数 . 然后，我们选取了 6个

具有不同僵尸网络类型和不同异常流量占比的场

景，对基于基础通用特征和细粒度特征的算法检

 

表 1    Bot-GECF模型训练算法

Table 1    Bot-GECF model training algorithm

Algorithm 1. Bot-GECF model training algorithm

To θinit K M
NUM δ α h γ η

Input: the original dataset  , initial model parameters  , the number of graph convolutional layers  , the maximum number of training epochs  ,
early stopping rounds  , the early stopping threshold  , hyperparameters  、 、  and  .

θ̂Output: the optimal model parameters  .

To T1:　Step1: Perform combination sampling on   to obtain a balanced training set  ;

G(V, A) T2:　Step2: Construct   based on  , and extract the initial node and communication features.

θ← θinit Lavg← 0 Lavg - pre← 03:　Step3: Initialize parameters:  ,  ,  ;

epoch = 1 M4:　Step4: for   to   do:

k = 1 K5.　　Step5: for   to   do:

Vk ← σ
(
Vk−1Wk

s + ÃVk−1Wk
c +Bk

)
6:　　　　 ; //Node feature aggregation and update via GNN propagation.

7:　　　end

V←
(
Att1(VK ), · · · ,Atth(VK )

)
WO8:　　Step6:  ; //Node feature fusion via multihead attention.

cl
mn
′← PReLU

(
LayerNorm

(
cl

mnWe + be
))

9:　　Step7:  ; //Normalize initial communication features.

c̄l
mn←

(
Vm,Vn, cl

mn
′)

10:　　Step8:  ; //Enhance communication features via node features.

pl
mn← softmax(MLP(c̄l

mn))11:　　Step9:  ; //Abnormal communication identification via MLP

L
(
pl

mn,y
l
mn

)
←−α

(
1− pl

mn

)γ
yl

mn log
(
pl

mn

)
− (1−α) pl

mn
γ (1− yl

mn

)
log
(
1− pl

mn

)
12:　　Step10:  ; //Calculate the loss value.

Lavg-pre←Lavg Lavg←
(
1
/
|T |)∑m,n,lL

(
pl

mn,y
l
mn

)
13:　　Step11:  ,  ; //Loss normalization.∣∣∣Lavg −Lavg - pre∣∣∣ δ NUM14:　　Step12：if  remains below   for   consecutive rounds then: //Check for early stop

15:　　　　break;

16:　　　else:

θ← θ−η∇θLavg17:　　　　 ; //Update model parameters via gradient descent.

18:　　　　end

19:　　end

θ̂← θ20:　Step13: return  ; //Return the optimal model parameters.
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测效果进行了对比，结果如图 3所示. 从实验结果

中可以看出，使用细粒度特征与使用基础通用特

征相比，模型的检测能力更强. 这表明细粒度特征

能更准确且精细地表达节点历史行为模式和单次

网络通信特征，从而有效提升模型对异常通信的

检测能力.
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图 3    基于细粒度特征和基础通用特征的算法检测性能对比

Fig.3    Detection performance comparison of algorithms based on fine-grained and basic features
 

Precision

F1-Score

为验证节点特征对通信特征的增强作用，本

文对基于初始通信特征和增强通信特征的算法检

测性能进行了对比 . 图 4的结果表明增强的通信

特征能显著提升模型的检测精度，尤其对

和 指标值的提升较为显著. 这表明在单次

通信异常识别过程中，充分考虑发起此次通信的

源节点和目标节点的历史行为模式，能够显著提

升模型的检测能力.

Precision

F1-Score

针对原始数据集类别不平衡问题，本文在 6个

不同场景中验证了组合采样技术对模型检测性能

的影响. 表 4的实验结果表明，组合采样技术通过

数据集中平衡正常样本和异常样本的比率，有效

缓解异常样本稀疏性对检测性能造成的不良影

响，从而提升各项性能指标值. 其中，对 和

均值的提升效果非常显著，从未进行组合

采样时 0.888197和 0.933977提升到了组合采样时

 

表 2    CTU-13数据集概览

Table 2    Overview of CTU-13 dataset

Scenario Total flows Botnet flows
(Percentage of total flows) Bot Scenario Total flows Botnet flows

(Percentage of total flows) Bot

1 2824636 39933 (1.41%) Neris 8 2954230 5052 (0.17%) Murlo

2 1808122 18839 (1.04%) Neris 9 2753884 179880 (6.53%) Neris

3 4710638 26759 (0.57%) Rbot 10 1309791 106315 (8.12%) Rbot

4 1121076 1719 (0.15%) Rbot 11 107251 8161 (7.61%) Virut

5 129832 695 (0.54%) Virut 12 325471 2143 (0.66%) NSIS.ay

6 558919 4431 (0.79%) Menti 13 1925149 38791 (2.01%) Virut

7 114077 37 (0.03%) Sogou

 

表 3    不同场景下的 Bot-GECF模型检测性能

Table 3    Detection performance of Bot-GECF under different scenarios

Scenario Precision Recall F1-Score Accuracy Scenario Precision Recall F1-Score Accuracy

1 0.998211 0.998698 0.998454 0.998608 8 1 0.998912 0.999456 0.998912

2 0.991306 0.998249 0.994765 0.998249 9 0.996960 0.998739 0.997849 0.998739

3 0.993201 0.998384 0.995786 0.998384 10 0.999875 0.999781 0.999828 0.999781

4 0.924731 1 0.960894 1 11 1 0.998775 0.999387 0.998775

5 1 1 1 1 12 0.990683 0.981538 0.986090 0.981538

6 0.996413 1 0.998203 1 13 0.998750 0.998417 0.998583 0.998417
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的 0.983557和 0.989477. 这也表明，组合采样技术

的引入能够显著降低模型的误报率和综合性能，

其中误报率的显著降低，能够有效减轻人工排查

负担，更好地保障工业系统连续稳定地运行.
 
 

表 4    SMOTE-Tomek组合采样对检测性能的影响

Table 4    Influence of SMOTE-Tomek sampling on detection performance

Scenario
Without SMOTE-Tomek sampling With SMOTE-Tomek sampling

Precision Recall Accuracy F1-score Precision Recall Accuracy F1-score

1 0.952924 0.999919 0.999283 0.975856 0.998211 0.998698 0.998608 0.998454

2 0.962611 1 0.999550 0.995 0.991306 0.998249 0.998249 0.994765

4 0.957921 1 0.999899 0.978508 0.924731 1 1 0.960894

6 0.990728 1 0.999922 0.995342 0.996413 1 1 0.998203

8 0.934385 0.999456 0.999853 0.965825 1 0.998912 0.998912 0.998456

12 0.530612 1 0.994111 0.693333 0.990683 0.981538 0.981538 0.986090

Average 0.888197 0.999896 0.998770 0.933977 0.983557 0.996233 0.996218 0.989477
 

Recall F-Score Recall
F1-Score

表 5展示了多头注意力机制的引入对模型检测

性能的影响. 实验结果表明，引入多头注意力机制能

在一定程度上提升 和 值，其中

均值从 0.9925提升至 0.9967， 均值从 0.9899
提升至 0.9907. 这主要是由于多头注意力机制能以

不同的方式对节点特征进行加权聚合，挖掘相邻节

Recall
点之间的多样化关联关系，实现更加灵活、准确的节

点特征表示，促进提升模型攻击检测性能.  值

的提升表明模型能够有效降低恶意攻击漏报率. 而
在工业环境中，即使极少数的恶意攻击漏报，也会造

成重大安全事故或经济损失，因此多头注意力机制

的引入对降低系统安全风险有重要意义.
 
 

表 5    多头注意力机制对模型检测性能的影响

Table 5    Influence of multihead attention on detection performance

Scenario
Without multi-head attention With multi-head attention

Precision Recall Accuracy F1-score Precision Recall Accuracy F1-score

4 0.932530 1 0.998368 0.965087 0.924731 1 1 0.960894

5 1 0.996296 0.999974 0.998145 1 1 1 1

6 1 0.994240 0.999952 0.997112 0.996413 1 1 0.998203

10 0.999875 0.999687 0.999964 0.999781 0.999875 0.999781 0.999781 0.999828

11 1 0.998775 0.999907 0.999387 1 0.998775 0.998775 0.999387

12 0.993671 0.966154 0.999734 0.979719 0.990683 0.981538 0.981538 0.986090

Average 0.987679 0.992525 0.999650 0.989872 0.985284 0.996682 0.996682 0.990734
 

(2)与其他算法的对比实验.

此外，本文将 Bot-GECF和文献 [13]中的 CNN、

LSTM、CNN–LSTM三种算法进行了检测性能对

比 . 这些算法是目前僵尸网络异常通信检测领域
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图 4    基于初始通信特征和增强通信特征的算法检测性能对比

Fig.4    Detection performance comparison of algorithms based on initial and enhanced communication features
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中使用较为广泛的几种深度学习模型，检测性能

较好且具有一定的代表性 . 图 5的对比结果表明

Bot-GECF在所有性能指标上均表现最佳 . 其中，

CNN模型主要将网络流量数据转换为二维空间数

据，并通过卷积操作实现特征提取，LSTM模型将

网络流量数据建模为时间序列数据，并挖掘流量

数据的时序依赖关系 ，CNN–LSTM模型融合了

CNN空间特征提取与 LSTM时序特征提取机制，

因此比前两者具有更强的特征表达能力. 然而，这

些模型都无法对节点之间的拓扑结构进行建模，

难以表征节点之间的局部和全局依赖关系，导致

节点特征表示不够准确，使模型检测性能相对较

低 . 相比之下，本文提出的 Bot-GECF模型利用图

模型对设备拓扑结构进行准确建模，并用图神经

网络实现节点信息的传播与聚合，从而更准确地

表示节点特征. 同时，引入节点特征对通信特征的

增强机制，在检测单次通信过程中充分考虑发起

此次通信的源节点和目标节点的历史行为信息，

从而有效提升了模型对异常通信的识别能力 . 因
此，Bot-GECF比 CNN，LSTM和 CNN–LSTM具有

更优秀的检测能力.
此外，本文将所提出的方法与僵尸网络异常

通信检测领域的新技术 Bot-DM[21] 进行对比 . Bot-
DM通过挖掘流量负载信息来增强异常检测，一方

面利用多层 Transformer编码器建模负载字节间隐

式语义关系，另一方面采用网络流量图像表征，通

过深度神经网络捕获不同字节的空间关联，最终

通过最大化两者互信息实现检测 . Bot-DM同样在

CTU-13数据集上进行实验验证，并在该数据集提

供的多个场景下都取得了较高的检测精度，因此

用于本文对比实验 . 表 6展示了在文献 [21]给定

的 5个场景下，Bot-DM与 Bot-GECF的检测对比

结果. 结果表明 Bot-GECF在不同场景下的性能指

标基本都优于 Bot-DM，即各项指标的平均值都有

较明显的提升. Bot-DM方法虽然也表现出较强的

检测能力，但需要借助对大量数据包负载信息的

分析，显著加重了模型计算开销 . 相比之下，Bot-
GECF无需进行负载分析，而是借助设备拓扑结构

建模和图神经网络的信息传播与聚合机制，实现

更准确的特征表达，并能在保持高检测精度的同

时，减少模型计算开销，有效降低实际工业场景中

因异常漏报和误报带来的重大安全风险和人工核

查负担.
 
 

表 6    Bot-GECF与 Bot-DM的检测性能对比

Table 6    Detection performance comparison of Bot-GECF and Bot-DM

Scenario
Bot-DM Bot-GECF

Precision Recall Accuracy F1-score Precision Recall Accuracy F1-score

1 0.992 0.9945 0.9947 0.9935 0.998211 0.998698 0.998608 0.998454

2 0.995 0.995 0.9964 0.995 0.991306 0.998249 0.998249 0.994765

3 0.997 0.9985 0.9984 0.998 0.993201 0.998384 0.998384 0.995786

9 0.987 0.9905 0.99 0.989 0.996960 0.998739 0.998739 0.997849

13 0.9795 0.9885 0.9896 0.9835 0.998750 0.998417 0.998417 0.998583

Average 0.9901 0.9934 0.99382 0.9918 0.995686 0.998497 0.998479 0.997087
 

 4    结论

为了提高僵尸网络异常通信检测精度，本文

提出一种基于图神经网络增强通信特征的僵尸网

络异常通信检测模型 Bot-GECF.
(1) Bot-GECF充分挖掘网络通信中节点和通

信的细粒度流量特征及连接特征，全面描述网络

通信行为，为僵尸网络异常通信检测提供丰富的

特征信息，并用图模型建模设备拓扑结构，充分利

用设备之间的空间关系提升异常通信检测效果.

(2) 利用图神经网络的信息传播和聚合机制，
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生成充分融合重要上下文信息的节点聚合特征，

并用节点聚合特征增强通信特征，生成更准确的

通信特征表示，进一步利用多层感知机 MLP模型

实现对僵尸网络异常通信的准确识别.
(3) 综合实验结果表明，Bot-GECF僵尸网络异

常通信检测技术对不平衡数据集具有很高的异常

识别精度，模型综合检测能力优秀 . 本文提出的

Bot-GECF模型通过适当修改也适用于其他网络

异常检测场景.
尽管本文提出的 Bot-GECF方法能够有效地

检测僵尸网络异常通信，但仍存在以下不足之处：

(1) 本文所构建的复杂网络结构为静态结构，

无法适应复杂网络随时间动态变化的规律 . 未来

将探索动态图神经网络或时序感知机制在僵尸网

络检测中的应用，增强模型对时变通信行为的建

模能力.
(2) 本文通过人工选取并计算节点及通信特

征，具有一定的主观性，后续可探索自动特征选择

机制，进一步提升模型的对特征的自动处理和筛

选能力.
(3) 本文实验基于 CTU-13公开数据集，虽在

僵尸网络研究领域具有一定代表性，但与真实工

业互联网场景仍存在一定差距，后续将进一步探

索工业互联网仿真场景下的僵尸网络数据集获取

或构建方式，以更好地验证方法的有效性.

参    考    文    献  

 Cacciuttolo  C,  Atencio  E,  Komarizadehasl  S,  et  al.  Internet  of

Things  long-range-wide-area-network-based  wireless  sensors

network  for  underground  mine  monitoring:  Planning  an  efficient,

safe,  and  sustainable  labor  environment.  Sensors,  2024,  24（21） :

6971

[1]

 Cacciuttolo C, Guzmán V, Catriñir P, et al. Sensor technologies for

safety  monitoring  in  mine  tailings  storage  facilities:  Solutions  in

the industry 4.0 era. Minerals, 2024, 14（5）: 446

[2]

 Lange T, Kettani H. On security threats of botnets to cyber systems //

Proceedings of the 6th International Conference on Signal Processing

and Integrated Networks （SPIN 2019）. Noida, 2019: 176

[3]

 Salem  A  H,  Azzam  S  M,  Emam  O  E,  et  al.  Advancing

cybersecurity:  A  comprehensive  review  of  AI-driven  detection

techniques. J Big Data, 2024, 11（1）: 105

[4]

 Wazzan  M,  Algazzawi  D,  Bamasaq  O,  et  al.  Internet  of  Things

botnet  detection  approaches:  Analysis  and  recommendations  for

future research. Applied Sci, 2021, 11（12）: 5713

[5]

 Aljarrah  S  J,  Cherbal  S,  Mashaleh  A,  et  al.  Optimizing  network

traffic  anomaly detection with normalized features  // Proceedings

of  the  2024  International  Jordanian  Cybersecurity  Conference

[6]

（IJCC）. Amman, 2024: 143

 Al-Mashhadi  S,  Anbar  M,  Hasbullah  I,  et  al.  Hybrid  rule-based

botnet  detection  approach  using  machine  learning  for  analysing

DNS traffic. PeerJ Comput Sci, 2021, 7: e640

[7]

 Haq  S,  Singh  Y.  Botnet  detection  using  machine  learning  //

Proceedings  of  the  5th  International  Conference  on  Parallel,

Distributed and Grid Computing （PDGC 2018）. Solan, 2018: 240

[8]

 Khan  R  U,  Zhang  X  S,  Kumar  R,  et  al. An  adaptive  multi-layer

botnet  detection  technique  using  machine  learning  classifiers.

applied Sci, 2019, 9（11）: 2375

[9]

 Mohan  H  G,  Kumar  J,  Rajesh  I  S,  et  al.  A  CNN  based  deep

learning  model  for  detecting  P2P  Botnets  using  flow  features  //

2024  Second  International  Conference  on  Networks,  Multimedia

and Information Technology （NMITCON）. Bengaluru, 2024: 1

[10]

 Padmavathi B, Muthukumar B. A deep recursively learning LSTM

model to improve cyber security botnet attack intrusion detection.

Int J Model Simul Sci Comput, 2023, 14（2）: 2341018

[11]

 Fu Y F, Du Y S, Cao Z J, et al. A deep learning model for network

intrusion  detection  with  imbalanced  data.  Electronics,  2022,

11（6）: 898

[12]

 Nugraha  B,  Nambiar  A,  Bauschert  T.  Performance  evaluation  of

botnet  detection  using  deep  learning  techniques  // Proceedings  of

the 11th International Conference on Network of the Future （NoF

2020）. Bordeaux, 2020: 141

[13]

 Lu F Q, Chen D W. Botnet identification method based on improved

CNN–LSTM fusion. Comput Appl Softw, 2024, 41（3）: 328

（卢法权, 陈丹伟. 基于改进 CNN–LSTM融合的僵尸网络识别

方法. 计算机应用与软件, 2024, 41（3）：328）

[14]

 Pektaş A, Acarman T. Deep learning to detect botnet via network

flow summaries. Neural Comput Appl, 2019, 31（11）: 8021

[15]

 Azab  A,  Khasawneh  M,  Alrabaee  S,  et  al.  Network  traffic

classification:  Techniques,  datasets,  and  challenges.  Digital

Commun Networks, 2024, 10（3）: 676

[16]

 Lagraa  S,  Husák  M,  Seba  H,  et  al.  A  review  on  graph-based

approaches  for  network  security  monitoring  and  botnet  detection.

Int J Inf Secur, 2024, 23（1）: 119

[17]

 Zhou J, Xu Z, Rush A M, et al. Automating botnet detection with

graph  neural  networks  [J/OL].  arXiv  preprint  （2020−03−13）

[2024−11−24]. https://arxiv.org/abs/2003.06344

[18]

 Meng  X,  Bo  L,  Yan  Y,  et  al.  Deeply  fused  flow  and  topology

features  for  botnet  detection  based  on  a  pretrained  GCN  [J/OL].

arXiv  preprint  （2024−05−25）   [2024−11−24].  https://arxiv.org/

abs/2307.10583

[19]

 Zhao J, Liu X D, Yan Q B, et al. Multi-attributed heterogeneous

graph  convolutional  network  for  bot  detection.  Inf  Sci,  2020,

537: 380

[20]

 Wu G L,  Wang X Y,  Lu Q,  et  al. Bot-DM: A dual-modal  botnet

detection  method  based  on  the  combination  of  implicit  semantic

expression and graphical expression. Expert Syst Appl, 2024, 248:

123384

[21]

 Hairani  H,  Anggrawan  A,  Priyanto  D.  Improvement  performance[22]

· 2036 · 工程科学学报，第 47 卷，第 10 期

https://doi.org/10.3390/s24216971
https://doi.org/10.1186/s40537-024-00957-y
https://doi.org/10.3390/app11125713
https://doi.org/10.7717/peerj-cs.640
https://doi.org/10.3390/app9112375
https://doi.org/10.1142/S1793962323410180
https://doi.org/10.3390/electronics11060898
https://doi.org/10.1007/s00521-018-3595-x
https://doi.org/10.1016/j.dcan.2022.09.009
https://doi.org/10.1016/j.dcan.2022.09.009
https://doi.org/10.1007/s10207-023-00742-7
https://arxiv.org/abs/2003.06344
https://arxiv.org/abs/2307.10583
https://arxiv.org/abs/2307.10583
https://doi.org/10.1016/j.ins.2020.03.113
https://doi.org/10.1016/j.eswa.2024.123384


of  the  random  forest  method  on  unbalanced  diabetes  data

classification using smote-tomek link. Int J Inf Visualization, 2023,

7（1）: 258

 Low  M  X,  Yap  T  T  V,  Soo  W  K,  et  al.  Comparison  of  label

encoding and evidence counting for malware classification. J Syst

Manage Sci, 2022, 12（6）: 17

[23]

 Henderi  H, Wahyuningsih T,  Rahwanto E. Comparison of Min–Max

normalization  and  Z-Score  Normalization  in  the  K-nearest  neighbor

（kNN）  Algorithm to  Test  the  Accuracy  of  Types  of  Breast  Cancer.

IJIIS, 2021, 4（1）: 13

[24]

 Shehzad  A,  Xia  F,  Abid  S,  et  al.  Graph  transformers:  A  survey

[J/OL]. arXiv preprint （2024−07−13） [2024−11−24]. https://arxiv.

org/abs/2407.09777

[25]

 Huang  L,  Qin  J,  Zhou  Y,  et  al.  Normalization  techniques  in[26]

training  DNNs:  methodology,  analysis  and  application.  IEEE

Trans Pattern Anal Mach Intell, 2023, 45（8）: 10173

 Jiang  T  T,  Cheng  J  Y.  Target  recognition  based  on  CNN  with

LeakyReLU and PReLU activation functions // 2019 International

Conference  on  Sensing,  Diagnostics,  Prognostics,  and  Control

（SDPC）. Beijing, 2019: 718

[27]

 Naskath  J,  Sivakamasundari  G,  Begum  A  A  S.  A  study  on

different  deep learning algorithms used in  deep neural  nets:  MLP

SOM and DBN. Wirel Pers Commun, 2023, 128（4）: 2913

[28]

 Zhou  P,  Xie  X  Y,  Lin  Z  C,  et  al.  Towards  understanding

convergence  and  generalization  of  AdamW.  IEEE  Trans  Pattern

Anal Mach Intell, 2024, 46（9）: 6486

[29]

 García  S,  Grill  M,  Stiborek  J,  et  al. An  empirical  comparison  of

botnet detection methods. Comput Secur, 2014, 45: 100

[30]

王云浩等：基于图神经网络增强通信特征的僵尸网络异常通信检测 · 2037 ·

https://doi.org/10.47738/ijiis.v4i1.73
https://arxiv.org/abs/2407.09777
https://arxiv.org/abs/2407.09777
https://doi.org/10.1109/TPAMI.2023.3250241
https://doi.org/10.1109/TPAMI.2023.3250241
https://doi.org/10.1007/s11277-022-10079-4
https://doi.org/10.1109/TPAMI.2024.3382294
https://doi.org/10.1109/TPAMI.2024.3382294
https://doi.org/10.1016/j.cose.2014.05.011

	1 问题建模
	2 基于图神经网络增强通信特征的僵尸网络异常通信检测模型
	2.1 模型概览
	2.2 初始特征构建
	2.3 基于GNN的节点聚合特征学习
	2.4 构建增强的通信特征进行异常识别
	2.5 模型训练

	3 实验及分析
	3.1 评估指标
	3.2 数据集和实验环境
	3.3 实验对比与分析

	4 结论
	参考文献

