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Pre-performance control for quadrotor UAV with quantitative overshoot constraints
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ABSTRACT To address the problem of quantitatively constraining overshoot in quadrotor unmanned aerial vehicles (UAVs) under
time-varying disturbances, we propose a neural network adaptive control method with prescribed performance based on a novel time-
varying barrier Lyapunov function(BLF). First, the overshoot constraint problem is analyzed, and a new asymmetric time-varying BLF is
designed to impose continuous constraints and enhance the flexibility of the performance boundary. Second, a tubular prescribed
performance function is constructed to enforce quantitative overshoot limits and meet steady-state performance requirements. Using the
backstepping method, a feedback control law and a neural network adaptive law are developed to ensure that system performance
constraints are satisfied. Stability analysis proves that all closed-loop signals are uniformly ultimately bounded. Simulation results
confirm that the proposed controller effectively constrains overshoot and ensures robust, high-accuracy tracking. The proposed method is
particularly applicable in realistic scenarios, such as navigating narrow passages or carrying suspended load, where overshoot constraints
are critical. In the realm of contemporary control methodologies, while extensive research has been dedicated to regulating system
overshoot, the prevailing approach for adjusting transient performance predominantly relies on parameter tuning. Such parameter-based
strategies, albeit widely adopted, often lack a systematic mechanism to enforce rigorous bounds on overshoot magnitudes. Notably, a
significant gap persists in the literature regarding the realization of quantitative constraints on overshoot, which is critical for ensuring

predictable system behavior in high-precision engineering applications. In recent years, several scholars have proposed a dynamic tube-
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based Model Predictive Control (MPC) framework. Within this framework, system states are confined to a predefined tube; meanwhile,
the geometric structure of the tube is designed, and a sliding mode controller is employed to impose constraints on system variables.
Nevertheless, the framework fails to address the constraint of overshoot, and the dynamic tube it constructs lacks inherent binding force.
Therefore, in this paper, drawing on the barrier Lyapunov function theory, this study establishes a set of tubes with binding force. By
predefining overshoot constraints via geometric configurations, quantitative constraints on the system overshoot are ultimately achieved.
The radial basis function neural network is employed to estimate multi-source time-varying disturbances, and its adaptive law ensures
effective disturbance rejection. Comparison experiments show that the control strategy restricts system errors within a predefined tubular
region and outperforms conventional methods in overshoot reduction. Furthermore, the method allows for the design of both transient
and steady-state performance in advance, thereby eliminating the need for repeated parameter tuning.

KEY WORDS self-adaptation control; neural network; barrier Lyapunov function; overshoot constraint; quadrotor unmanned aerial

vehicles
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Table 1 Physical parameters of the quadrotor UAV body

Parameters Value Parameters Value Parameters Value Parameters Value
mikg 1.79 Li(kg'm’) 0.03 k/(N'ms™) 0.01 ky/(N-rag-s™) 0.012
glm's?) 9.8 L/(kgm?) 0.04 ly/(N-m™s™") 0.01 ks/(N-rag'-s™) 0.012
I/(kg'm?) 0.03 /m 0.2 ky/(N-m™s™") 0.01 kg/(N-rag'-s™) 0.012
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Table 2 Controller parameters
Parameters Value Parameters Value Parameters Value Parameters Value
Vix 6 C1 11 Ao 17 ny 1.6
Ty 3 o1 10 Ay 15 hy 20
Y1z 3 Cy1 10 un 1 hy 30
Vi 10 A 16 ) 1 hy, 32

Desired trajectory

[x(0),(0),2(0)]" = [5,5,5]1", [4(0),6(0),y:(0)]" = [0,0,0]",

—— ABLF

B P e 3 T ML B -

[ 20[1-cos*(0.2t)] t€[0,16)

TV 22001 —cos2(0.2)] 1€ (16,30]

ya= 20co0s(0.21)sin(0.27) € [0,30] 50)
[ 1.5+20sin(0.21) 1€[0,16)

{71 1.5-20sin(0.21) 1€ (16,30]

B A PR R B 80 i = 505 BN 20 54 30
o di(t) = 0.1sin(r), HHi=y,z,4,6,4; tub(B, B =
B ENB0; = 9. Broj =3+ Bacoj = 0.05 . Bpeoj = —0.05,
c1j=15. ;=15 K j=uxyz M E T —4
HA WS, Aksh . 2807805 s,
P WL 3h 40 A T R 22 W AR B B, HOE X an st

B3 BRERURE
Fig.3 Tracking effect

ZE A8 T G B RE (1938 Pl P PR e 83, o T X R 2
P HEAT E AW, Bk T A SCRIE B A R R R]
Fr, AT LATE RS 22 50 1 R 25 P RE EAT 20 SR A ] I

(51) 7.
TRUER AT AR S L
- 0.5 te[0,10)
42 xR du(ty =) 05 cost) t €10, 10+2m) st
RET AN E R 5 m IR TIGE K, BREE N x 0.8 cos(2nr) t € [10+2m, 10+4m)
N . NN . . _ 0.001¢
SR RO B L, R GV IR SR RE R cos()e+0.5 1€ [10+4m,30]
T Desired trajectory = = = ABLF — PPChounds  ———w- ABLF
4
— 3 — 15 0.02
7 g2} A N 3 . 10 £
Vi S 1k 7 / \, E o5t DS U
£ o N ol AN £2 ) Y] —
= \\ 0051015 / \ Sf 0555570 0 12 14
N, 5 § o R Vs 7 s
~—"" ]
_5 1 1 _1 1 1 1
0 5 10 15 20 0 5 10 15 20
t/s t/s
S 5 —_— 4 Is 0.02
SN™E 4L -~ AN 3 £ 05 g_ £
= 0 AN Y, // \ s 2 S ok S
£ N sl \ £ 05 0.02 w
= N\ 00510 7 N < f 0 051015 10 12 14
\ s \, N i/s e tls
~ —_ SN —A 0 ]
75 L L 71 1 1
0 5 10 15 20 0 5 10 15 20
t/s tls
1535 . 4F s 0.02
E4s) e I T Eoske £ 0
E 10" -~ T 2 v op T Y ——
N 400570 e - £ 056557 S0 12 14
0051015 o= =1k 051015
tis_,-—"" © 0 N3 t/s d t/s
5 4-—-—" L L L 71 4 L L L
0 5 10 15 20 0 5 10 15 20
t/s t/s
(a) (b)

B4 (CERESCRE. () AERERIL; (b) A E R EISL

Fig.4 Effect of position tracking: (a) position tracking curve; (b) convergence curve of position error
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