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Effect of particle size on the thermal conductivity and viscosity of nanofluids: A review

SUI Pengxiang™
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ABSTRACT Nanofluids, recognized as advanced media for heat and mass transfer, have demonstrated substantial potential across
diverse engineering applications, particularly in scenarios demanding enhanced thermal management and improved energy efficiency.
Nevertheless, their deployment relies on the precise characterization of thermophysical properties governed by nanoscale phenomena,
including particle size, morphology, dispersion stability, and interfacial dynamics. This paper presents an analysis that integrates
experimental observations, multiscale theoretical frameworks, and empirical correlations to investigate how nanoparticle size influences
the effective thermal conductivity and dynamic viscosity, while also examining the roles of particle shape factor, volume fraction,
temperature, phonon matching, and aggregation dynamics. The experimental results confirm that the thermal conductivity increases as
the particle size decreases and the volume fraction increases, owing to the elevated surface-to-volume ratio and intensified Brownian
motion-induced microconvection. This effect is further amplified at higher temperatures, which enhances the Brownian activity. A
pronounced nonmonotonic relationship emerges, revealing an optimal particle diameter of approximately 50 nm at which ballistic
phonon transport—activated when the particle dimensions approach the phonon mean free path of the base fluid—minimizes interfacial

thermal resistance and maximizes heat transfer. Nanoparticles smaller than this threshold incur excessive interface scattering, which
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limits conductivity, whereas larger particles exhibit weakened Brownian contributions and greater sedimentation tendencies.
Additionally, phonon frequency matching between the nanoparticle and the base fluid has been shown to critically affect thermal
transport, such that even materials with lower intrinsic conductivity can yield superior performance when well matched. Beyond
conductivity, nanoparticle aggregation at high volume fractions forms fractal-like conductive networks that further boost heat transfer but
simultaneously increase viscosity through intensified hydrodynamic drag and interparticle friction, underscoring the importance of
optimizing both particle concentration and aggregation state. Viscosity measurements revealed that the dynamic viscosity increased with
the volume fraction and decreased with the temperature, reflecting enhanced particle interactions and reduced Brownian mobility under
high loading and low thermal conditions. While most studies, including this one, observed that the viscosity increases with the particle
size, primarily owing to enhanced hydrodynamic resistance, certain investigations demonstrated that exceptionally small particles may
also elevate the viscosity because their high surface-to-volume ratios intensify interfacial molecular ordering and localized shear effects.
These discrepancies are largely attributable to variations in dispersion stability and aggregation kinetics, with poorly stabilized
suspensions showing significant viscosity deviations compared with well-dispersed systems. Classical theoretical models, such as the
Maxwell-Garnett and Bruggeman models, are inadequate for capturing these complex behaviors because they ignore size-dependent
interfacial effects and dynamic particle—fluid coupling, whereas empirical correlations that incorporate particle size parameters,
temperature-dependent Brownian coefficients, and aggregation dynamics achieve prediction errors below 8% across diverse
compositions. Sensitivity analyses demonstrated that slight deviations in the nanoparticle diameter could shift the optimal performance
thresholds, highlighting the necessity for precise size control during synthesis. Furthermore, preliminary comparisons among spherical,
rod-like, and plate-shaped particles suggest that the morphology can modulate both the thermal conductivity and viscosity, with cubic or
high-aspect-ratio geometries offering enhanced conductivity at similar volume fractions but exhibiting limited influence on the viscosity
at low loadings. By systematically mapping the interdependencies among nanoparticle size, thermal conductivity, viscosity, phonon
matching, and aggregation, this study advances actionable strategies for optimized nanofluid design, including recommendations for
maintaining moderate volume concentrations of optimally sized particles, employing surface functionalization to stabilize dispersions,
and exploring hybrid particle systems to decouple thermal and viscous responses.

KEY WORDS nanofluids; particle size; thermal conductivity; dynamic viscosity
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Table 1 Summary of the experimental investigations of the thermal conductivity of the nanofluids

Reference Nanoparticle Particle size/nm Volume fraction/% Base fluid Maximum enhancement ratio/%
[17] Al O3 38.4 4 Water 243
[10] AlL O3 15, 26, 60.4, 302 1-5 Water 29
[18] Al,O3 131 4 Water 24
[19] Al O3 38.4 43 Water 33
[20] AL O3 28 5.5 Water 16
[21] Al,O3 11/47/150 14 Water 32
[22] Al O3 36/47 6 Water 28.2
[23] AlL O3 36/47 19 Water 15
[24] Al O3 8-282 2-4 Water 18
[25] Al O3 11, 20, 40 5 Water 10
[26] AL O3 11-150 3 Water 33
[27] Al O3 71.6,114.5,136.8 0.51 Water 6
[19] Al O3 28 5 Ethylene glycol 24.5
[28] TiO, 15 5 Water 33
[29] TiO, 95, 145, 210 0.6 Water 3
[30] TiO, 22.9,51.87,43.80 25 Water 169
[30] CuO 36 5 Water 60
[19] CuO 23.6 5 Water 60
[31] Cu 50-250 0.2 Water 23
[32] Cu 10 0.3 Ethylene glycol 40
[33] Si0; 10-280 16 Water 16
[34] Si0; 10, 20, 40, 60 2-14 Water 14
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Table 2 Thermophysical parameters of the nanofluids '~

Material Density/ Speciflc heat/ Thermal conductivity/
(kgm™)  (Jkg'K (W-m™'-K™)
Al O3 3970 765 40
Cu 8933 385 401
Ag 10500 235 429
TiO, 4250 686.2 8.954
Fe304 5200 670 6
H,O 997.1 4179 0.613
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Fig.1 Comparison of the experimental data with theoretical models and
correlations for the effective thermal conductivity of Al,Oz—water

nanofluid at different particle sizes and volume fractions
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Table 3 Summary of the experimental investigations of the viscosity of the nanofluids
Reference Nanoparticle Particle size/nm Volume fraction/% Base fluid Maximum enhancement ratio/%

[65—66] Al O3 36,47 1-9 Water 430
[67] Al O3 45,150 0.51-2.1 Water 6
[68] AL O3 35, 45,90 5 Water 14.1
[69] Al O3 12, 28, 32, 80, 150 5 Water 88.2
[70] Al O3 8.2,14,53 0.5-4 Water 65
[71] AL O3 95, 100 0.5-6 Water 77
[72] Al O3 10, 30 1-3 Water 107
[71] Al O3 100 0.5-6 Ethylene glycol 30
[68] AL O3 35,45,90 5 Ethylene glycol 28.7
[20] Al O3 28 1.2-3.5 Ethylene glycol 39
[73] AlLO3 27,40, 50 0.5-3 Propylene glycol 36.72
[70] SiO; 6.5,65,110 0.5-4 Water 49
[74] SiO; 10, 16, 25, 100 2 Ethanol 43
[75] SiO; 35,94, 190 1.1-7 Ethylene glycol 99
[76] SiO; 25,50, 100 8 Ethylene glycol, Water 62.5
[77] SiO, 25,50, 100 6 Ethylene glycol, Water 123.2
[78] TiO, 25 0.25-1.2 Water 11
[79] TiOy 21 0.2-2 Water 15
[29] TiO, 95,145,210 0.6 Water 7.16
[80] TiO, 21 0.2-3 Water 135
[81] TiO, 25 0.1-1.86 Ethylene glycol 23
[82] CuO 8-37 1-10(Mass fraction) Water 73
[71] CuO 152 0.5-6 Ethylene glycol 32
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