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Effect of low-temperature ausforming on hydrogen-induced delayed fracture of high-
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School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
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ABSTRACT High-strength bolts are widely used in construction machinery, steel structures, bridges, automobiles, and other industrial
sectors owing to their high load-bearing capacity and connection efficiency. With the advancement of modern industry, there is a
growing demand to further enhance the strength of high-strength bolt steel without significantly compromising its resistance to hydrogen
embrittlement or hydrogen-induced delayed fracture (HIDF). To investigate the potential of microstructural control in improving the
HIDF resistance of high-strength bolt steel, a V+Nb-microalloyed Cr—Ni—Mo high-strength bolt steel was subjected to low-temperature
ausforming (i.e., controlled forging starting at ~ 950 °C and finishing at ~ 625 °C), followed by direct water quenching and tempering at
450 °C for 2 h. The HIDF behavior was evaluated using slow strain rate tensile (SSRT) tests on pre-electrochemically hydrogen-charged
notched round bar tensile specimens, along with hydrogen thermal analysis. The microstructural features were examined and their
influence on HIDF was discussed. For comparison, the same steel was also processed by conventional forging (starting at ~ 1170 °C and

finishing above 900 °C, followed by air cooling), quenching, and tempering (austenitized at 945 °C, oil-quenched, and tempered at 450 °C
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for 2 h, air-cooled). The results show that low-temperature-controlled forging produced a fine-banded microstructure with pronounced
grain elongation along the forging direction and a grain size reduction of ~ 53%. The prior austenite grain boundaries were serrated and
lacked coarse cementite film precipitation, while ~ 7.7% polygonal ferrite formed along these boundaries. Both the smooth and notched
tensile strengths of the low-temperature-controlled forged samples increased by approximately 5.6% and 9.1%, respectively, compared to
those of the conventionally forged samples. Notably, despite the increase in strength, the low-temperature ausformed sample exhibited
excellent HIDF resistance. The notch tensile strength (indicating HIDF resistance) increased by 62.1%, and the hydrogen embrittlement
sensitivity index (measured by the relative notch tensile strength loss rate) decreased by 27.6% after low-temperature-controlled forging.
The fracture mechanism transitioned from brittle intergranular fracture along prior austenite grain boundaries (in conventionally forged
samples) to transgranular quasi-cleavage fracture in low-temperature ausformed samples. The brittle zone area on the fracture surface
was significantly reduced, from ~ 38% in the former to ~ 20% in the latter, despite nearly identical diffusible hydrogen content. The
enhanced HIDF resistance is mainly attributed to the fine banded structure, formation of polygonal ferrite, and changes in cementite
morphology along the prior austenite grain boundaries. Therefore, tailoring the microstructure and grain boundary characteristics through
low-temperature deformation is an effective strategy to further improve the HIDF resistance of high-strength bolt steels.

KEY WORDS high-strength bolt steel; ausforming; controlled forging; hydrogen-induced delayed fracture; hydrogen embrittlement;
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1 SEER BN A I S AR SR RO U A (PF: B3R 44 LD: QB T7 [l ND: 1277 [0]). (a) JEUR G ToRL, CF-AQ; (b) Ji B [T AR ik,

HF-AQ; (c, e) MOUZHLUESR, CF-AQ; (d, f) MIMAIZUESE, HF-AQ

Fig.1 Prior austenite grains and microstructures of the samples in the as-quenched (AQ) condition (PF: polygonal ferrite; LD: longitudinal direction;
ND: normal direction): (a) prior austenite grains, CF-AQ; (b) prior austenite grains, HF-AQ); (c, ) microstructures, CF-AQ; (d, f) microstructures, HF-AQ
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B2 S0 CF-T450 KA HE-T450 ££1) SEM 1 TEM SOMZHZUBI. (a, o) HRA MIFIAR 2% AR BRIK, CF-T450; (b, d) AR 2% (Al AR 4% 9 IR BRI,
HF-T450; (e) k3R PANT IR LG 5 S0, CF-T450; () WUBLRIB W AT U GGG 4310, HT-T450

Fig.2 SEM and TEM micrographs of the CF-T450 and HF-T450 samples: (a, c) showing the distribution of inter- and intra-lath cementite particles, CF-
T450; (b, d) showing the distribution of inter- and intra-lath cementite particles, HF-T450; (e) polygonal ferrite along the PAGBs, CF-T450; (f) filmy

cementite along the PAGBs, HF-T450
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Fig.3 XRD patterns (a) and dislocation densities (b) of the tested steel in the as-quenched (AQ) and 450 °C tempered conditions
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Fig4  SSRT applied stress—displacement curves for two groups of
samples: (a) CF-T450; (b) HF-T450
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Fig.5 SEM fractographs of the uncharged SSRT samples CF-T450 and HF-T450: (a) macroscopic fracture appearance, CF-T450; (b) macroscopic

fracture appearance, HF-T450; (c) magnified image of the regions near the notch root, CF-T450; (d) magnified image of the regions near the notch root,

HF-T450
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Fig.6 SEM fractographs of the hydrogen-charged SSRT sample CF-T450: (a, b) macroscopic fracture appearance; (c, d, e, f) magnified images of
regions ¢, d, e, and f indicated in (a, b)
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Fig.7 SEM fractographs of the hydrogen-charged SSRT sample HF-T450: (a) macroscopic fracture appearance; (b, ¢, d) magnified images of the regions
marked as b, ¢, and d in (a)
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Fig.8 Hydrogen desorption rate (a) and hydrogen permeation curves of
CF-T450 (b) and HF-T450 (c)
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Table 2 Summary of hydrogen permeation and thermal analysis results for the tested samples

Sample toe3 /s D/ (107em*s ™) Cy/10°° Cy /107 Cyi /10°° Ty /C Ty IC
CF-T450 21376 1.40 1.29 1.13 0.16 150 354
HF-T450 15429 1.94 1.37 1.18 0.19 144 334

#3  LEE ARG XSRS ARILE
Table 3 Summary of estimated hydrogen trap densities in the tested samples
Sample dq/ Ig/ ) CHi }YE_GBC% ]Y;_diS/fs NT_GB];r NTidis/ €/
um (10° m™) (107°) (107 em™) (10”7 ecm™) (107 ecm™) (Nt.gB T N1-gis)
CF-T450 6.6 1.94 1.85 6.72 3.73 10.45 0.08
HF-T450 14.1 1.71 1.95 3.15 3.29 6.44 0.14




- 1998 -

TR, 5 47 5, 5 10

Ab AT 22 HOCHE AN AR BT (T 1(e) ). BT 9
FIEL 10 433125 H1 T CE-T450 FEF1 HE-T450 ££ SSRT
VT T (0 45 5t 1 AR S Y e X)) A T Y SEML A
EBSD JE4i. AT UL, %t T CF-T450 £f, MEREHCT
WLEE, SSRT 1 1] 44047 Ji& Ty ] 1 4 b AN W % AE
BH . 1) B 1), LAl TR ) 2 a0 R R AE (1] 9(a)
F(b) ) s R R A AT WL, W mT % B4 1) 28 50 3k
NS Lk N | RS S N S N ]
R, HRGA B Z 0 X, ¥ R A E i
(A 9(c) F(d)); #E—4 EBSD Mg £ W, 24 &
TV I AR B BT Ak i AR A (& 9Ce) FI(E) ),
T BT 10 G e X S 00 S v A B DT 2 ) AR AR i o
T HF-T450 F£, SSRT # 1] 24 250 H A< U Ji B [C AR &y
FY R, R B AR B T (] 10(a) Fl(b) ) 5 A )
4 9 [7) B A U L LG R B R (] 10(c)

IS, BTN AL S5 (BRI A > 15°)

(d)), EBSD Z5 R [AlAEIESE 1 1 A (& 10(e) F(E) ),
AT T 1 DX 522 30 S 1 o5 DRI 4 %) R AL . X T CF-
T450 FF, 4i /)N [8] B 19 5571 145 SSRT M4 fE Y i
T R O W AR B T 3 S, DT R EE IS AR T £
(A RE HE 5 L AR, e 1 AR Bk 32 28 2 2 vifs B I 0% A 1
2R B T B0 i A R 9 1 7 5 W80 8 T g
S PEAR =LY R 3K sh 1 P % F HF-T450 #¢,
Al AL B e I 2R T R K A e R R R AR S
WAL R . R, CP-T450 #£ /Y SSRT R4y 4 Ji
P EH K T HE-T450 A%, M mi &2 80 4 &
SO ISIN RS

3) i A R R AR

QT A, AR AR HRRE B LA i AT AR I
SEAR DR, 3 (A5 m IR [ KR AR i A S B

Fig.9 SEM fractographs and EBSD maps of the longitudinal cross-section of the SSRT sample CF-T450: (a, b) the fracture appearance near the fracture
surface; (¢, d) longitudinal internal cracks; (e) quality image; (f) inverse pole figure, with black lines indicating high-angle grain boundaries

(misorientation angle > 15°)
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Fig.10 SEM fractographs and EBSD maps of the longitudinal cross-section of the SSRT sample HF-T450: (a, b) the fracture appearance near the

fracture surface; (c, d) longitudinal internal cracks; (e) quality image; (f) inverse pole figure, with black lines indicating high-angle grain boundaries

(misorientation angle > 15°)
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