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Ash reactivity characteristics of diopside powder
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ABSTRACT Diopside CaMg( SiO;), is a common mineral form of calcium magnesium silicate. Apart from dioside quarries diop—
side also appears in skarn tailings. Diopside is a novel energy-saving raw material mainly used in the ceramics industry. Glazed tiles
prepared with diopside have the characteristics of low-temperature fast curing which offers significant advantages to the building materi—
als industry. The results reported in this paper show that the silicate and quartz composition in skarn lead and zinc tailings are likely to
participate in the generation of ettringite and C—S—H gel in hydration reactions respectively. Therefore lead/zinc tailings can be used
as concrete admixtures. As an important component of skarn tailings the study of the ash reactivity of this type of tailings has great sig—
nificance for comprehensive utilization in industry but the relevant literature is incomplete. Paste samples were prepared with diop—
side gypsum and calcium hydroxide in this paper. The ash reactivity of fineground diopside was studied and hydration products were
investigated using X-—ray diffraction scanning electron microscopy fourier transform infrared spectroscopy differential scanning calo—
rimeter and nuclear magnetic resonance. The results show that the compressive strength of the paste prepared from fine-ground diopside
can reach 9. 83 12.79 and 18. 87 MPa at curing ages of 3 7 and 28d suggesting that fine-ground diopside has good ash reactivity.

The hydration products of cement prepared with fineground diopside are mainly accounted for by the C—S—H gel. Nuclear magnetic
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resonance results show that with the deepening of the hydration reaction the percentage of silicon atoms in the Q* structure state re—
duces and the Al/Si ratio in the C—S—H gel is lower than that in the original diopside material. With an increasing curing age a small
amount of gypsum and a large amount of Ca( OH) , participate in the reaction. The amount of C—S—H gel hydration products increases
gradually. The filling effect of the gypsum particles promotes the growth of the tructure’ s strength with an increasing curing time al—
though this effect does not alter the chemical reactions. These results will provide sufficient evidence for preliminary judgments of
whether skarn tailings possess ash reactivity.
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Fig.1 XRD spectrum of diopside
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Fig.2 Particle size distribution of fine-ground diopside
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Table 2 Compressive strength of paste samples MPa
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Fig.3 XRD spectra of the mixed powder and the paste samples with

different ages
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Fig.4 SEM images and EDS spectrum of paste samples with different ages: (a) 3d; (b) EDS analysis of (a); (¢) 7d; (d) 28d
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Fig.5 FT—IR spectra of the mixed powder and the paste samples

with different ages
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