工程科学学报 第41卷 第6期:788-796 2019年6月

Chinese Journal of Engineering , Vol. 41 , No. 6: 788–796 , June 2019 DOI: 10.13374/j.issn2095–9389.2019.06.011; http://journals.ustb.edu.cn

## 纳米隔热材料的孔隙结构特征与气体热传输特性

### 杨海龙<sup>∞</sup>,胡子君,孙陈诚,胡胜泊,杨景兴

航天材料及工艺研究所先进功能复合材料技术重点实验室,北京 100076 应通信作者, E-mail: yhl20032003@126.com

摘 要 为研究纳米隔热材料孔隙结构内部的气体热传输特性 采用溶胶一凝胶工艺结合超临界干燥技术 ,制备了一系列具 有不同孔隙结构特征的样品 ,通过热导率、氮气吸一脱附和真密度测试 ,全面、准确获取了其孔隙结构信息 ,并专门、系统研究 了孔隙结构特征与气体热传输特性之间的关系 . 研究结果表明: 与气相贡献热导率相对应 材料具有双尺度孔隙结构特征 ,并 且当大孔隙尺度不及小孔隙的 10 倍时 ,可进一步等效为单尺度孔隙 . 考虑气固耦合传热的本征气相贡献热导率随孔隙尺度 的增大而升高 ,与气相热导率变化类似且成一定的比例关系 ,孔隙尺度小于 200 nm 和大于 500 nm 时的比例系数分别为 2.0 和 1.5 200 ~ 500 nm 时则为 2.0 ~ 1.5 . 当大、小孔隙尺度的比值不超过 10 时 ,或者这一比值为 100 ~ 1000 且大孔隙含量低于 10% 时 ,气相贡献热导率随环境气压的降低依次呈现快速下降、缓慢下降和无变化三个阶段; 当这一比值超过 3000 时 ,即使大 孔隙含量很低(不超过 10%) ,气相贡献热导率也会依次呈现快速下降、缓慢下降、快速下降和无变化四个阶段. 关键词 纳米隔热材料; 气相贡献热导率; 气相热导率; 孔隙结构; 等效孔径 分类号 TB34

# Pore structure of nano-porous thermal insulating materials and thermal transport *via* gas phase in their pores

#### YANG Hai-long<sup>™</sup>, HU Zi-jun, SUN Chen-cheng, HU Sheng-bo, YANG Jing-xing

Science and Technology on Advanced Functional Composites Laboratory, Aerospace Research Institute of Materials & Processing Technology, Beijing 100076, China

Corresponding author , E-mail: yhl20032003@126.com

**ABSTRACT** The thermal insulation properties of nano-porous thermal insulating materials largely depend on thermal transport *via* gas phase within their pores , and this process relies on their pore structures. Therefore , investigating pore structures and thermal transport *via* gas phase is important to understand the heat transfer mechanism. Current research mainly focuses on the theoretical calculation and analysis from the perspective of heat transfer , and special and systematic studies based on actual materials have not been reported yet. In addition , accurate analysis of pore structures using usual techniques is difficult due to the complex pore network and the poor mechanical properties of their solid skeleton. In this study , nano-porous thermal insulating materials with different pore structures were synthesized *via* a sol-gel process followed by supercritical drying. The materials were then characterized by thermal conductivity tester , nitrogen adsorption–desorption , and helium pycnometer. The pore structures of the resulting materials were obtained , and the relationship between pore structures and thermal transport *via* gas phase was studied. Results show that the bimodal distribution of pores in the resulting materials , corresponding to gas-contributed thermal conductivity. All pores within the resulting materials can be equivalent to pores with a single diameter when the equivalent size of large pores is 10 times less than that of small pores. Similar to the pure gaseous thermal conductivity , the intrinsic gas-contributed thermal conductivity including gas–solid coupling effects rises with increasing pore diameter of the materials. The ratio of intrinsic gas-contributed thermal conductivity to pure gaseous thermal conductivity is 2.0, 1.5,

and 2. 0-1.5 for pores smaller than 200 nm , larger than 500 nm , and with size between 200 and 500 nm , respectively. When the equivalent size of large pores is 10 times less than that of small pores or when the equivalent size of large pores is 100-1000 times that of small pores and the contribution of large pores to the total porosity is less than 10% , the gas-contributed thermal conductivity reduction of the resulting material with decreasing gas pressure can be divided into three stages ( steep decreasing stage , slow decreasing stage , and hardly changing stage) according to decreasing rate. When the equivalent size of large pores is 3000 times larger than that of small pores , the gas-contributed thermal conductivity reduction of the resulting material with decreasing stage , slow decreasing stage , steep decreasing stage are can be divided into four stages ( steep decreasing stage , slow decreasing stage , steep decreasing stage , and hardly changing stage) even if the contribution of large pores to the total porosity is very low ( less than 10% ).

**KEY WORDS** nano-porous thermal insulating materials; gas-contributed thermal conductivity; gaseous thermal conductivity; pore structure; equivalent pore diameter

纳米隔热材料[1-4]具有极低的热导率,隔热保 温性能较传统材料优势十分明显,因此在航天防隔 热以及建筑保温等领域备受关注. 其中 独特的纳 米孔隙结构是实现高效隔热与保温的关键因素之 一 同时也是其最典型的细观结构特征<sup>[5]</sup>. 气体热 传导因这种孔隙结构的努森效应<sup>[6]</sup>会被大幅削弱, 但试验测试却表明,室温常压条件下一般仍能占到 总热导率的 50% 以上[7-9],并且在特定环境条件下 还会出现热导率测试数值明显高于自由空间气体热 导率理论数值的现象<sup>[9-11]</sup>.因此,研究纳米隔热材 料的孔隙结构特征,认识其中的气体热传输特性,对 于理解其中的传热机理具有重要意义 同时也有助 于进一步改善和提高材料的隔热性能 但这一方面 的研究目前主要集中于从传热学角度进行的理论计 算分析[12-16] 而从实际材料出发所进行的专门、系 统性研究则未见报道. 另一方面,纳米隔热材料细 观结构受制备条件的影响很大,孔隙结构呈现出千 差万别的多样性<sup>[5]</sup>.因此,进行上述研究的前提是 准确、全面获取材料的孔隙结构信息 但由于这种材 料的孔隙结构尺度跨度大 加之其本身固体骨架较 差的力学性能 使其孔隙结构特征的获取存在相当 大的难度和挑战<sup>[17]</sup> 近年来以比利时 Pirard 等<sup>[18-20]</sup> 为代表的研究小组试图采用压汞测试结合理论分析 来加以解决 但所建立的方法并未获得普遍应用 说 明还存在一定的问题. 鉴于上述问题和困难,本文 利用材料孔隙结构与气体传热之间的构效关系模 型 结合常规的细观结构表征技术 全面获取了材料 的等效孔隙结构 研究了不同尺度孔隙结构内、气固 耦合作用下的本征气相贡献热导率变化规律以及与 气相热导率之间的关系 ,明确了孔隙结构对气体热 传输特性的影响.

#### 1 实验材料及方法

1.1 原料 四甲氧基硅烷(TMOS)、四乙氧基硅烷 (TEOS)、甲醇(MeOH)、乙醇(EtOH)、盐酸(HCl)、 氨水(NH<sub>3</sub>•H<sub>2</sub>O)和醋酸(AcH)均为分析纯; 钛酸四 丁酯(TBOT),化学纯; 去离子水(H<sub>2</sub>O),自制; 石英 纤维,直径4~7μm,长度6mm.

#### 1.2 样品制备

为获得具有不同孔隙结构特征的纳米隔热材料,分别以TMOS、TEOS和TBOT为前驱体,以石英纤维为增强相,采用溶胶-凝胶法结合超临界干燥技术,制备了10种不同的样品,制备条件如表1所示.

采用碱催化一步溶胶-凝胶法,以TMOS为前驱体制备样品 G1.将TMOS、MeOH和H<sub>2</sub>O混合搅拌10min,随后加入NH<sub>3</sub>•H<sub>2</sub>O和石英纤维搅拌20min倒入模具静置凝胶.石英纤维控制为样品最终质量的3%.

采用酸、碱两步溶胶-凝胶法,以 TEOS 为前驱 体制备样品 G2、G3、G4、G5 和 G9.将 TEOS、EtOH、 HCl 及 H<sub>2</sub>O 混合,室温搅拌 1 h 使 TEOS 水解.静置 24 h 待 TEOS 进一步水解后,加入 NH<sub>3</sub>•H<sub>2</sub>O 和石英 纤维搅拌 10 min 倒入模具静置凝胶.石英纤维控制 为样品最终质量的 3%.

在样品 G3 制备的基础上,采用加压增密的方法制备样品 G6、G7 和 G8. 具体过程为:采用 G3 的方法和步骤制备样品后,将其在压力成型试验机上加压至设定密度并保压 6 h 以获得 G6、G7 和 G8.

采用酸催化一步溶胶-凝胶法,以 TBOT 为前驱 体制备样品 G10. 将 H<sub>2</sub>O 与二分之一 EtOH 混合并 搅拌均匀制备溶液 A 待用,将 AcH 和剩余的 EtOH 混合并搅拌均匀制备溶液 B,随后在搅拌作用下将 石英纤维加入溶液 B 中,最后将溶液 A 加入溶液 B 中,搅拌 2 min 后倒入模具静置凝胶. 石英纤维控制 为样品最终质量的 4.8%.

上述制备的凝胶均在 EtOH 中老化 7 d 后,以 EtOH 为超临界介质在高压釜内进行干燥. 高压釜

| 700  |   |
|------|---|
| ·/90 | • |

| Tuble T Officies condition of nails proces including individus |                                                                            |      |      |                                               |  |  |
|----------------------------------------------------------------|----------------------------------------------------------------------------|------|------|-----------------------------------------------|--|--|
| +* 🗆                                                           | 物庁的星々に                                                                     |      |      |                                               |  |  |
| 作于口口                                                           | 初原的里之比                                                                     | HCl  | AcH  | $\mathrm{NH}_3 \cdot \mathrm{H}_2 \mathrm{O}$ |  |  |
| G1                                                             | n [TMOS]: $n$ [MeOH]: $n$ [H <sub>2</sub> O] = 1:8:4                       | —    | _    | 10. 80                                        |  |  |
| G2                                                             | $n [\text{TEOS}]$ : $n [\text{EtOH}]$ : $n [\text{H}_2\text{O}] = 1$ : 7:4 | 5.88 | —    | 22.10                                         |  |  |
| G3                                                             | n [TEOS]: $n$ [EtOH]: $n$ [H <sub>2</sub> O] = 1:7:3                       | 0.80 | —    | 2.00                                          |  |  |
| G4                                                             | n [TEOS]: $n$ [EtOH]: $n$ [H <sub>2</sub> O] = 1:7:3                       | 0.80 | —    | 5.00                                          |  |  |
| G5                                                             | n [TEOS]: $n$ [EtOH]: $n$ [H <sub>2</sub> O] = 1:7:3                       | 0.80 | —    | 10.00                                         |  |  |
| G6                                                             | n [TEOS]: $n$ [EtOH]: $n$ [H <sub>2</sub> O] = 1:7:3                       | 0.80 | —    | 2.00                                          |  |  |
| G7                                                             | n [TEOS]: $n$ [EtOH]: $n$ [H <sub>2</sub> O] = 1:7:3                       | 0.80 | —    | 2.00                                          |  |  |
| G8                                                             | n [TEOS]: $n$ [EtOH]: $n$ [H <sub>2</sub> O] = 1:7:3                       | 0.80 | —    | 2.00                                          |  |  |
| G9                                                             | n [TEOS]: $n$ [EtOH]: $n$ [H <sub>2</sub> O] = 1: 3. 5: 3                  | 0.80 | —    | 20.00                                         |  |  |
| G10                                                            | n [TBOT]: $n$ [EtOH]: $n$ [H <sub>2</sub> O] = 1:5:4                       | —    | 2.80 | —                                             |  |  |

表1 纳米隔热材料的制备条件

 Table 1
 Synthesis condition of nano-porous thermal insulating materials

釜内温度和压力分别升至 250 ℃和 8 MPa 后保持 3 h 随后恒温将 EtOH 恒速放出 ,自然冷却至室温后 将样品取出.

#### 1.3 性能测试与表征

采用热导率测试仪(HC-074-304,EKO,Japan, 测量精度为 ±1%,重复性误差为 ±0.5%)测试材 料的热导率 样件尺寸为 260 mm × 260 mm × 25 mm; 以 N<sub>2</sub>为吸附质,采用比表面积分析仪(Autosorb IQ, Quantachrome Instruments,America)在 77 K 温度下 对材料进行孔隙结构表征,测试前将材料在 150 ℃ 和真空环境下脱气处理 10 h,采用氮气吸附量计算 孔体积,并利用脱附曲线以 BJH 法计算孔径分布; 采用氦比重仪(Pycnometer 1000, Quantachrome, America)测试材料的真密度,测试前将样品在 150 ℃的真空干燥箱中干燥 2 h; 样件尺寸由精度 0.02 mm 的游标卡尺测试获得 ,质量由精度 0.01 g 的电 子天平对 150 ℃温度下干燥至恒重的样件进行称量 获得 ,表观密度由质量和尺寸计算得到.

#### 2 结果与讨论

#### 2.1 孔隙结构获取与特征分析

表 2 给出的是纳米隔热材料的各项物理性质. 其中  $\rho$  和 $\rho_s$ 分别为材料的表观密度和真密度;  $V_{BJH}$ 、  $D_{BJH}$ 和  $S_{ext}$ 分别为氮气吸一脱附测试获得的孔体积、 孔径分布曲线的峰值孔径(图1)和外比表面积;  $\phi$ 、 V、 $D_e$ 和  $\varphi$  分别为材料孔隙率、理论孔体积、理论平 均孔隙直径以及孔体积测得率,计算公式分别如 下<sup>[21]</sup>:

表 2 纳米隔热材料的物理性质

| Table 2 | Physical | properties | of nano-porous | thermal | insulating | materials |
|---------|----------|------------|----------------|---------|------------|-----------|
|         | ~        | 1 1        | 1              |         | 0          |           |

|     | 表观密                   | 真密度 ,                 | 孔隙        | 理论孔                                      | 测试孔体                                  | 孔体积            | 外比表面                 | 气相贡献                            | 理论平均             | 测试峰                    | 大尺度孔隙                | P                             |
|-----|-----------------------|-----------------------|-----------|------------------------------------------|---------------------------------------|----------------|----------------------|---------------------------------|------------------|------------------------|----------------------|-------------------------------|
| 样品  | 度 $ ho$ /             | $ ho_{ m s}$ /        | 率,        | 体积 //                                    | 积 ,V <sub>BJH</sub> /                 | 测得率,           | 积 $S_{\text{ext}}$ / | 热导率 $k_{g-c}$ /                 | 孔隙直径,            | 值孔径,                   | 等效孔径,                | D /D                          |
|     | (g•cm <sup>-3</sup> ) | (g•cm <sup>-3</sup> ) | $\phi/\%$ | $( \text{ cm}^3 \bullet \text{g}^{-1} )$ | $( \text{ cm}^3 \cdot \text{g}^{-1})$ | $\varphi / \%$ | $(m^2 \cdot g^{-1})$ | $(W \cdot m^{-1} \cdot K^{-1})$ | $D_{\rm c}$ / nm | $D_{\rm BJH}/{\rm nm}$ | $D_{\rm g-c}/\rm nm$ | $D_{\rm g-c}$ / $D_{\rm BJH}$ |
| G1  | 0.212                 | 2.0759                | 89.79     | 4.24                                     | 3.87                                  | 91.38          | 798                  | 0.00660                         | 21               | 14                     | 2000                 | 143                           |
| G2  | 0.203                 | 2.0830                | 90.25     | 4.45                                     | 4.25                                  | 95.59          | 913                  | 0.00843                         | 20               | 27                     | 10000                | 370                           |
| G3  | 0.203                 | 2.0041                | 89.87     | 4.43                                     | 3.48                                  | 78.61          | 341                  | 0.01199                         | 52               | 61                     | 300                  | 5                             |
| G4  | 0. 193                | 1. 9875               | 90. 29    | 4.68                                     | 3.50                                  | 74.82          | 215                  | 0.01389                         | 88               | 59                     | 300                  | 5                             |
| G5  | 0. 194                | 1.9773                | 90. 19    | 4.65                                     | 0.65                                  | 13.98          | 87                   | 0.01908                         | 216              | 93                     | 300                  | 3                             |
| G6  | 0.269                 | 2.0041                | 86. 58    | 3.22                                     | 3.03                                  | 94.14          | 337                  | 0.00955                         | 39               | 58                     | 300                  | 5                             |
| G7  | 0.364                 | 2.0041                | 81.84     | 2.25                                     | 2.20                                  | 97.85          | 330                  | 0.00784                         | 28               | 38                     | 200000               | 5263                          |
| G8  | 0.419                 | 2.0041                | 79.09     | 1.89                                     | 1.75                                  | 92.71          | 355                  | 0.00729                         | 22               | 27                     | 200000               | 7407                          |
| G9  | 0.344                 | 1.9280                | 82.16     | 2.39                                     | 0.95                                  | 39.78          | 48                   | 0.02008                         | 206              | 104                    | 300                  | 3                             |
| G10 | 0.369                 | 3. 5883               | 89.72     | 2.43                                     | 1.42                                  | 58.40          | 51                   | 0. 02345                        | 193              | 106                    | 700                  | 7                             |

$$\phi = 1 - \frac{\rho}{\rho_s} \tag{1}$$

$$V = \frac{1}{\rho} - \frac{1}{\rho_{\rm s}} \tag{2}$$

$$D_{\rm c} = \frac{4V}{S_{\rm ext}} \tag{3}$$

$$\varphi = \frac{\gamma_{\rm BJH}}{V} \tag{4}$$

 $k_{g-e}$ 为大气压环境与 10 Pa 左右真空环境条件 下的材料热导率差值,通常被称作"气相热导率". 一般来说,传统意义上的"气相热导率"是指,多孔 介质传热过程中仅考虑气体分子之间热量交换而获 得的气相等效热导率.但是,近年来的一些研究表 明 经实验测试获得的所谓"气相热导率"实际包含 了因气体与固体传热相互作用产生的耦合热导 率<sup>[9,12,16,22-26]</sup>.因此,一些研究者将上述测试获得的 "气相热导率"称作"气相贡献热导率"<sup>[14,25]</sup>.为了 便于区分,本文也采用"气相贡献热导率"这一 概念.



图1 纳米隔热材料的孔径分布曲线

Fig. 1 Pore diameter distribution of nano-porous thermal insulating materials

表 2 所示的材料孔体积测得率均未达到 100%,说明氮气吸--脱附测试不能够探测到材料中 的所有孔隙,与其他研究者获得的结果一 致<sup>[2,17,27-28]</sup>这是由氮气吸--脱附本身测试范围的局 限性所决定的<sup>[2,17,27]</sup>,同时说明材料中还存在一定 数量的大尺度孔隙, $D_{g-e}$ 便是这部分孔隙结构的等 效孔径,它是由气相贡献热导率 $k_{g-e}$ 与孔隙直径之 间的构效关系模型推导获得的.推导中所采用的构 效关系模型<sup>[29]</sup>(以下简称"气固耦合模型")为

$$k_{\rm g-c} = Fk_{\rm g} \tag{5}$$

式中,*F*为比例因子; *k*<sub>g</sub>为气相热导率,计算公式<sup>[6,10]</sup>为

$$k_{\rm g} = \frac{\phi k_{\rm g,0}}{1 + 2\beta K_{\rm n}} \tag{6}$$

式中 k<sub>s</sub>, 为自由空气的热导率; β 为常数 ,表示气体 分子与多孔材料孔壁之间的相互作用; K<sub>n</sub>为努森数 , 计算公式为

$$K_{\rm n} = \frac{l_{\rm g}}{D} \tag{7}$$

式中 *D* 为孔隙尺寸; *l*<sub>g</sub>为气体分子的平均自由程, 计算公式为

$$l_{\rm g} = \frac{k_{\rm B}T}{\sqrt{2}\pi d_{\rm g}^2 p_{\rm g}} \tag{8}$$

式中  $k_{\rm B}$ 是玻尔兹曼常数; T 为热力学温度;  $d_{\rm g}$ 为气

体分子平均直径; p。为气体压强.

对于存在多种尺度孔隙结构的实际材料来讲, k<sub>g-c</sub>可采用气固耦合多孔模型进行更加准确地描述

$$k_{g-c} = \sum_{i=1}^{l=n} F_i \frac{\varepsilon_i \phi k_{g,0}}{1 + 2\beta K_n^i}$$
(9)

式中  $\varepsilon_i$ 为直径  $D_i$ 的孔隙在材料总孔隙中所占的比例 相应地  $K_n^i$ 和  $F_i$ 分别为  $D_i$ 所对应的努森数和比例 因子.

由式(5) 或(9) 可知 以气固耦合模型获取材料 孔隙结构信息的关键是比例因子 F 的确定. 但是, 正如 Swimmk 等<sup>[29]</sup>所指出的那样 F 的取值大小与 材料细观结构密切相关,一般很难确定,因此预先获 取 F 的取值是不可能的. 与上述求解方法不同,如 果事先获取材料在不同气压下的气相贡献热导率, 对模型中的孔隙直径和比例因子不断赋值,并将计 算结果与实测数据进行比对,两者吻合性较好时便 可确定所要求解的孔隙直径和比例因子等.为此, 测试了大气压至 10 Pa 左右之间不同气压下的气相 贡献热导率. 在之后的等效孔隙结构获取中,首先 采用气固耦合双孔模型进行了尝试. 为进一步简化 计算 将大、小尺度部分的孔隙结构均视为单一尺度 的孔隙 ,且小尺度孔隙的等效直径和占比分别取值 为表 2 中的  $D_{\rm BH}$ 和  $\varphi$ ,计算结果如图 2 所示. 可以看 到,计算结果与实测数据能够实现较好地吻合,说明

这一模型能够较为准确地描述材料内部的气体热传 导,获得的孔隙直径和比例因子较为合理,同时表明 材料中大、小尺度部分的孔隙结构均可等效为单一 尺度的孔隙. 值得注意的是,计算值和测试值在 10<sup>4</sup>~10<sup>5</sup> Pa 出现了一定的偏差,这是由构效模型本 身的一些局限性所导致的<sup>[12]</sup>.

同理,为判断理论平均孔隙直径 D。作为材料等 效孔径的可能性,以其作为气固耦合模型的输入参 数进行了计算,结果见图2.依据计算数据与实测数 值的吻合性,可以分为两种情况.对于样品 G3 ~ G6、G9 和 G10 来说,同实测数据的吻合性与双孔模 型类似,说明材料的孔隙结构也能够等效为单一尺 度的孔隙; 对于样品 G1、G2、G7 和 G8 来说,计算结 果与测试数据的吻合性则较差,说明 D。不能够准确 反映材料的孔隙结构.

此外 表 2 中的 R 为  $D_{g-c}$ 与  $D_{BH}$ 的比值 ,用以 反映大、小孔隙结构之间尺度差异的大小.

由表 2 中的数据可以看出,各样品的孔隙结构 有所差别,均具有一定的各自特征,总体来说可以大 致分为两类. 样品 G1、G2、G7 和 G8 中的等效直径 为 *D*<sub>BH</sub>的小孔隙尺度较小且在数量上占绝对主导地 位,占比(φ)超过了90%,但同时含少量微米甚至 100 μm 量级的大尺度孔隙,*R* 的数值已超过了 100,说明孔隙结构极度不均匀;其余样品的小孔



图 2 纳米隔热材料气相贡献热导率测试值与计算值. (a) G1; (b) G2; (c) G3; (d) G4; (e) G5; (f) G6; (g) G7; (h) G8; (i) G9; (j) G10

Fig. 2 Measured and calculated gas-contributed thermal conductivity of nano-porous thermal insulating materials: (a) G1; (b) G2; (c) G3; (d) G4; (e) G5; (f) G6; (g) G7; (h) G8; (i) G9; (j) G10

隙尺度虽相对较大,但 R 的数值不到 10,说明孔隙 结构相对较为均匀.这一归类与前述所提及的孔 隙结构是否可以等效为单一尺度孔隙的分类结果 相同.

G1 和 G2 中尺度过大的孔隙结构可能是材料中的气泡,因为原材料配比中水的含量较高,加之催化剂浓度较大,前驱体水解、缩聚较快,溶胶黏度增长较快,凝胶时间较短,因搅拌带入到溶胶中的极少量空气未及时排出而残存在材料内部. G7 和 G8 中存在更大尺度孔隙结构的原因在于,加压增密过程中石英纤维趋向于面内分布,但压力去除后局部纤维出现了回弹,使得材料局部产生了微裂纹缺陷结构,并且理论上表观密度增加越大,单位体积内的纤维就越多,这种回弹就越明显,缺陷结构越多,表现为大孔隙含量的增加. G6 与之不同,因加压变形

量较小,未出现上述情况.

#### 2.2 孔隙结构内部的本征气相贡献热导率

表 2 所示的样品中,只有孔隙率相同且孔隙结 构可以等效为单一尺度孔隙时,才能够直观地反映 出孔隙结构尺度变化对气相贡献热导率的影响,例 如样品 G3、G4、G5 和 G10.为进一步定量研究气相 贡献热导率与材料孔隙结构之间的关系,采用式 (6)消除孔隙率的影响,由此获得了大气压环境下 不同尺度孔隙结构内部的本征气相贡献热导率,结 果如表 3 所示.其中  $k_{g-e}^{B}$ 和  $k_{g-e}^{S}$ 分别为大气压环境 下大、小孔隙结构内部的气相贡献热导率,来源于图 2 中的计算数据  $k_{g-e}^{B}$ 和  $k_{g-e}^{S}$ 领的本征气相贡献 热导率;  $k_{g-e}^{L}$ 色由  $k_{g-e}$ 获得的本征气相贡献 热导率,显然只有材料的所有孔隙结构能够等效为 单一尺度孔隙时才能适用.

| 表3 | 纳米隔热材料的气相 | 贡献热导率 |
|----|-----------|-------|
|----|-----------|-------|

| <b>Table 3</b> Gas-contributed thermal conductivity of nano-porous thermal insulating materials |                                                               |                                                               |                                                               |                                                                |                                                                |  |  |
|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|--|--|
| 样品                                                                                              | $k_{\rm g-c}^{\rm B}$ /( W•m <sup>-1</sup> •K <sup>-1</sup> ) | $k_{\rm g-c}^{\rm S}$ /( W•m <sup>-1</sup> •K <sup>-1</sup> ) | $k_{\rm g-c}^{\rm I}$ /( W•m <sup>-1</sup> •K <sup>-1</sup> ) | $k_{\rm g-c}^{\rm IB}$ /( W•m <sup>-1</sup> •K <sup>-1</sup> ) | $k_{\rm g-c}^{\rm IS}$ /( W•m <sup>-1</sup> •K <sup>-1</sup> ) |  |  |
| G1                                                                                              | 0.00297                                                       | 0.00363                                                       | —                                                             | 0.03837                                                        | 0.00442                                                        |  |  |
| G2                                                                                              | 0.00148                                                       | 0.00695                                                       | —                                                             | 0.03719                                                        | 0.00806                                                        |  |  |
| G3                                                                                              | 0.00465                                                       | 0.00734                                                       | 0.01334                                                       | 0.02419                                                        | 0. 01039                                                       |  |  |
| G4                                                                                              | 0.00447                                                       | 0.00942                                                       | 0.01538                                                       | 0.01966                                                        | 0. 01394                                                       |  |  |
| G5                                                                                              | 0.01540                                                       | 0.00368                                                       | 0.02116                                                       | 0.01985                                                        | 0. 02919                                                       |  |  |
| G6                                                                                              | 0.00137                                                       | 0.00818                                                       | 0.01103                                                       | 0.02700                                                        | 0.01004                                                        |  |  |
| G7                                                                                              | 0.00067                                                       | 0.00717                                                       | —                                                             | 0.03808                                                        | 0.00895                                                        |  |  |
| G8                                                                                              | 0.00211                                                       | 0.00518                                                       | —                                                             | 0.03660                                                        | 0.00706                                                        |  |  |
| G9                                                                                              | 0.01004                                                       | 0.01004                                                       | 0.02444                                                       | 0.02029                                                        | 0.03072                                                        |  |  |
| G10                                                                                             | 0. 01063                                                      | 0. 01282                                                      | 0.02614                                                       | 0. 02848                                                       | 0. 02447                                                       |  |  |

表 3 中的  $k_{g-c}^{I}$ 、 $k_{g-c}^{IB}$ 、 $k_{g-c}^{IS}$ 分别与表 2 中孔隙直 径  $D_{e}$ 、 $D_{e-e}$ 、 $D_{BH}$ 间的关系如图 3 所示. 可以看到, 本征气相贡献热导率随孔隙结构尺度的增大而升 高,并且对 20~3000 nm 之间孔隙结构尺度的变化 相当敏感,而对小于20nm或大于3000nm的孔隙结 构尺度变化敏感性较差 与  $\phi = 1$  时采用式(6) 计算 获得的本征气相热导率变化趋势颇为相似 恰好与 气固耦合模型所描述的两者之间的关系相吻合.鉴 于这种相似性 将尺度小于 200 nm 孔隙结构内的气 相热导率数值增大到自身的2倍获得一条拟合曲线 (A) 而将尺度大于 500 nm 孔隙结构内的气相热导 率数值增大到自身的 1.5 倍获得另一条曲线(B), 如图 3 所示. 可以发现,获得的两条曲线与气相贡 献热导率数值吻合较好,基本上能够反映气相贡献 热导率的变化规律. 由此可以想象,当孔隙结构尺 度在 200~500 nm 之间时, 气相贡献热导率与气相 热导率之间的比例因子应该在 2.0~1.5 之间.因

此 材料孔隙结构内部、考虑气固耦合传热的本征气 相贡献热导率可以表示为

$$k_{g-c}^{I} = \begin{cases} 2.0k_{g}^{I} & (D \leq 200 \text{ nm}) \\ (2.0 \sim 1.5) k_{g}^{I} & (200 \text{ nnm} < D < 500 \text{ nnm}) \\ 1.5k_{g}^{I} & (D \geq 500 \text{ nnm}) \end{cases}$$
(10)

式中  $k_{g}^{I}$  是  $\phi = 1$  时由式(6) 计算获得的本征气相热 导率.

在表2中,出现单一等效孔隙结构尺度不在大、 小孔隙等效孔径之间现象的原因就在于比例因子取 值的差别,例如样品G3和G6.此外,由上述结果还 可以看出,材料孔隙结构尺度越小,比例因子数值越 大,这与气固耦合传热的产生机理<sup>[9,12,29]</sup>是一致的, 因为材料孔隙结构尺度越小,细观结构中的狭小部 位就越多,发生气固耦合传热的机会和数量就越多. 这一比例因子取值的明确,显然给材料结构设计和 性能优化带来了诸多方便,无疑将产生重要的应用





Fig. 3 Relationship between intrinsic gas-contributed thermal conductivity and pore diameter

价值.

2.3 气相贡献热导率随环境气压的变化

图 2 中的数据显示,无论材料的孔隙尺度及孔隙率如何变化,气相贡献热导率均随环境气压的降低而下降,但每个样品的变化特点各异.除 G7 和 G8 外,所有样品的气相贡献热导率变化均可以划分为三个阶段:快速下降阶段 I 、缓慢下降阶段 II 和基本无变化阶段 III(以样品 G3 为例,见图 2);样品 G7 和 G8 的气相贡献热导率变化则需要划分为四个阶段:快速下降阶段 I、缓慢下降阶段 II、快速下降阶段 I、缓慢下降阶段 II、快速下降阶段 I、缓慢下降阶段 II、快速下降阶段 I、缓慢下降阶段 II、快速下降阶段 II、

对于仅存在单一尺度孔隙结构的理想多孔材料 来说,伴随着环境气压的降低,气体分子的平均自由 程逐渐增大,孔隙结构的努森效应逐渐增强,气相贡 献热导率表现为快速下降、缓慢下降直至无变化三 个阶段,如图4所示.对于拥有多尺度孔隙结构的 实际材料来讲,情况与之类似,只不过按孔隙结构的 度由小到大的次序,依次在环境气压由高向低的变 化过程中对气体热传导产生影响,气相贡献热导率 依据材料的具体孔隙结构特征而呈现不同的变化, 需同时考虑孔隙结构尺度、含量及均匀性等细节. 孔隙尺度决定了发生变化所需环境气压的高低;孔 隙含量控制变化的大小;孔隙均匀性决定变化的 快慢.

假设材料中的小孔隙尺度为 50 nm ,并将大孔 隙尺度赋值为 500 ~ 350000 nm ,气相贡献热导率随 大孔隙含量的变化如图 5 所示. 其中 ,孔隙直径分 别为 50、500 nm 及以上时 ,比例因子 F 分别取值为 2.0 和 1.5. 可以看到 ,当大、小孔隙尺度的比值为 10 时 ,无论大孔隙的含量如何 ,气相贡献热导率随 环境气压降低均呈现三个阶段的变化 ,这是因为大、 小孔隙的尺度差距较小 ,因两者导致的气相贡献热



图 4 单一尺度孔隙结构内本征气相贡献热导率和努森数随环 境气压的变化

Fig. 4 Gas pressure dependence of intrinsic gas-contributed thermal conductivity and knudsen number of a porous material with a single pore diameter

导率变化相互"衔接"而"融合"在了一起,从而仅表 现出较为简单的变化形式,样品 G3~G6、G9和 G10 与之相同,这与其结构能够等效为单一尺度孔隙的 事实相一致.当大、小孔隙尺度的比值为 100~1000 且大孔隙含量不超过 10%时,气相贡献热导率随环 境气压的降低仍然呈现三个阶段的变化,这是由于 大、小孔隙结构尺度尽管已相差较大,但因大孔隙含 量较低,不足以对气相贡献热导率造成明显影响,样 品 G1和 G2属于此类情况.当大、小孔隙的尺度差距过 大,即使大孔隙含量很低,也足以能够影响到整个气 相贡献热导率的变化,因此呈现出了四个阶段的复 杂变化,相当于两种尺度孔隙影响的叠加,样品 G7 和 G8 便是如此,且在 G8 中表现的尤为明显.

结合图 5 及图 3 可知,理想的纳米隔热材料孔 隙结构尺度应该为 20 nm ,且需严格控制大尺度孔 隙的大小及含量.结合表 1 中的样品制备条件及表 2 中的材料热物性可知,制备过程需特别注意催化 剂以及水的用量等核心参数,但本质是实现前驱体 水解和聚合过程的有效控制.

#### 3 结论

(1)与气相贡献热导率相对应,纳米隔热材料 具有典型的双尺度孔隙结构特征,并且当大孔隙尺 度不及小孔隙的10倍时,所有孔隙结构可进一步等 效为单一尺度的孔隙,其值可由材料的理论孔体积 和外比表面积计算得到.

(2)纳米隔热材料孔隙结构内部、考虑气固耦 合作用的本征气相贡献热导率随孔隙结构尺度的增 大而升高,并且对20~3000 nm 之间孔隙结构尺度 的变化相当敏感,与气相热导率变化类似且成一定



图 5 大尺度孔隙对纳米隔热材料本征气相贡献热导率的影响. (a) 500 nm; (b) 5000 nm; (c) 50000 nm; (d) 150000 nm; (e) 250000 nm; (f) 350000 nm

Fig. 5 Effect of large pores on intrinsic gas-contributed thermal conductivity of nano-porous thermal insulating materials: (a) 500 nm; (b) 5000 nm; (c) 50000 nm; (d) 150000 nm; (f) 350000 nm

的比例关系,孔隙尺度小于200 nm 和大于500 nm 时 的比例系数分别为2.0和1.5 200~500 nm 时则在 2.0~1.5 之间.

(3) 无论纳米隔热材料的孔隙尺度及孔隙率如 何变化,气相贡献热导率均随环境气压的降低而下 降,但变化特点各异.

(4)当纳米隔热材料大、小孔隙结构等效孔径 的比值不超过10时,或者当这一比值在100~1000 之间且大孔隙含量不超过10%时,气相贡献热导率 随环境气压的降低依次呈现快速下降、缓慢下降和 无变化三个阶段;当这一比值超过3000时,即使大 孔隙含量很少(小于10%),气相贡献热导率随环境 气压的降低将会依次呈现快速下降、缓慢下降、快速 下降和无变化四个阶段.

#### 参考文献

- [1] Bouquerel M, Duforestel T, Baillis D, et al. Heat transfer modeling in vacuum insulation panels containing nanoporous silicas-a review. Energy Build, 2012, 54: 320
- [2] Hu Z J, Li J N, Sun C C, et al. Recent developments of nano-superinsulating materials. *Mater China*, 2012, 31(8): 25
   (胡子君,李俊宁,孙陈诚,等. 纳米超级隔热材料及其最新研究进展.中国材料进展,2012,31(8): 25)
- [3] Koebel M, Rigacci A, Achard P. Aerogel-based thermal superinsulation: an overview. J Sol-Gel Sci Technol, 2012, 63(3): 315
- [4] Chen D P , Hou K Y , Wang L J , et al. Status and development of fire protection materials based on super thermal insulator and their application prospect in urban underground space. *Chin J Eng* , 2017 , 39(6): 811

(陈德平,侯柯屹,王立佳,等.超级绝热型防火材料的研究 进展及其在城市地下空间的应用展望.工程科学学报,2017, 39(6):811)

- [5] Hüsing N, Schubert U. Aerogels-airy materials: chemistry, structure, and properties. Angew Chem Int Ed, 1998, 37(1-2): 22
- [6] Qiao J H , Bolot R , Liao H L , et al. Knudsen effect on the estimation of the effective thermal conductivity of thermal barrier coatings. J Therm Spray Technol , 2013 , 22(2-3): 175
- [7] Spagnol S , Lartigue B , Trombe A , et al. Experimental investigations on the thermal conductivity of silica aerogels by a guarded thin-film-heater method. J Heat Transfer , 2009 , 131 (7): 074501-1
- [8] Zhu C Y, Li Z Y, Zhao X P, et al. The DSMC study on gas heat conduction in nanoscale. *J Eng Thermophys*, 2016, 37(5): 1027 (朱传勇,李增耀,赵新朋,等. 纳米尺度下气体导热的 DSMC模拟. 工程热物理学报, 2016, 37(5): 1027)
- [9] Swimm K , Reichenauer G , Vidi S , et al. Gas pressure dependence of the heat transport in porous solids with pores smaller than 10  $\mu$ m. Int J Thermophys ,2009 ,30(4) : 1329
- [10] Reichenauer G, Heinemann U, Ebert H P. Relationship between pore size and the gas pressure dependence of the gaseous thermal conductivity. *Colloids Surf A*, 2007, 300(1-2): 204
- [11] Zhang H, Li Z Y, Dan D, et al. The influence of gas pressure on the effective thermal conductivity of nano-porous material. *J Eng Thermophys*, 2013, 34(4): 756
  (张虎,李增耀,丹聃,等. 气氛压力对纳米多孔材料等效热 导率的影响. 工程热物理学报, 2013, 34(4): 756)
- [12] Zhao J J , Duan Y Y , Wang X D , et al. Effects of solid-gas coupling and pore and particle microstructures on the effective gaseous thermal conductivity in aerogels. J Nanopart Res , 2012 , 14 (8): 1024
- [13] He Y L, Xie T. A review of heat transfer models of nanoporous silica aerogel insulation material. *Chin Sci Bull*, 2015, 60(2): 137
  (何雅玲,谢涛. 气凝胶纳米多孔材料传热计算模型研究进
- [14] Zhu C Y , Li Z Y. The numerical study on the gas-contributed thermal conductivity of aerogel. J Eng Thermophys , 2017 , 38 (8): 1753

展. 科学通报, 2015, 60(2): 137)

(朱传勇,李增耀. 气凝胶中气相贡献热导率的数值求解. 工程热物理学报,2017,38(8):1753)

- [15] Coquil T , Fang J , Pilon L. Molecular dynamics study of the thermal conductivity of amorphous nanoporous silica. Int J Heat Mass Transfer , 2011 , 54(21-22): 4540
- [16] Raed K , Gross U. Modeling of influence of gas atmosphere and pore-size distribution on the effective thermal conductivity of knudsen and non-knudsen porous materials. Int J Thermophys , 2009 , 30(4): 1343
- [17] Yang H L , Wang X T , Wang Q , et al. Study on mercury poro-

simetry and gas sorption for pore structure characterization of nano-porous super thermal insulating materials. *Acta Mater Compos Sin*, 2013, 30(Suppl): 273

(杨海龙,王晓婷,王钦,等. 压汞和气体吸附在纳米超级隔 热材料孔隙结构表征中的应用研究. 复合材料学报,2013, 30(增刊):273)

- [18] Pirard R, Rigacci A, Marechal J C, et al. Characterization of hyperporous polyurethane-based gels by non-intrusive mercury porosimetry. *Polymer*, 2003, 44(17): 4881
- [19] Pirard R , Alie C , Pirard J P. Characterization of porous texture of hyperporous materials by mercury porosimetry using densification equation. *Powder Technol* , 2002 , 128(2-3): 242
- [20] Alie C , Pirard R , Pirard J P. Mercury porosimetry: applicability of the bucking-intrusion mechanism to low-density xerogels. J Non-Cryst Solids , 2001 , 292(1-3): 138
- [21] Wiener M , Reichenauer G , Braxmeier S , et al. Carbon aerogelbased high-temperature thermal insulation. Int J Thermophys , 2009 , 30(4): 1372
- [22] Bi C, Tang G H. Study of coupling heat transfer between solid and gas phases in nanoporous aerogel. *J Eng Thermophys*, 2015, 36(6): 1315
  (毕成,唐桂华. 多孔材料气凝胶气固耦合传热研究. 工程

(平成, 唐柱平, 多九材料 7 凝胶 7 直柄吉 16 然研充, 工程 热物理学报, 2015, 36(6): 1315)

[23] Zhao J J, Yu H T, Duan Y Y, et al. Analysis of aerogel thermal conductivity based on the microstructure. J Eng Thermophys, 2013, 34(10): 1926
(赵俊杰,于海童,段远源,等.基于微观结构的气凝胶热导)

率分析. 工程热物理学报,2013,34(10):1926)

- [24] Zhao J J , Duan Y Y , Wang X D , et al. A 3-D numerical heat transfer model for silica aerogels based on the porous secondary nanoparticle aggregate structure. J Non-Cryst Solids , 2012 , 358 (10): 1287
- [25] Li Z Y , Zhu C Y , Zhao X P. A theoretical and numerical study on the gas-contributed thermal conductivity in aerogel. *Int J Heat Mass Transfer*, 2017, 108: 1982
- [26] Bi C, Tang G H, Hu Z J, et al. Coupling model for heat transfer between solid and gas phases in aerogel and experimental investigation. Int J Heat Mass Transfer, 2014, 79: 126
- [27] Lee O J , Lee K H , Yim T J , et al. Determination of mesopore size of aerogels from thermal conductivity measurements. J Non-Cryst Solids , 2002 , 298(2-3): 287
- [28] Tamon H, Kitamura T, Okazaki M. Preparation of silica aerogel from TEOS. J Colloid Interface Sci , 1998, 197(2): 353
- [29] Swimm K , Vidi S , Reichenauer G , et al. Coupling of gaseous and solid thermal conduction in porous solids. J Non-Cryst Solids , 2017 , 456: 114