

Mn基低温脱硝催化剂性能优化研究进展

许芸 邬博宇 庄柯 张乾 徐静馨 张深根 朱法华 张柏林

Progress of performance optimization for Mn-based SCR catalysts at low temperature

XU Yun, WU Boyu, ZHUANG Ke, ZHANG Qian, XU Jingxin, ZHANG Shengen, ZHU Fahua, ZHANG Bolin

引用本文:

许芸, 邬博宇, 庄柯, 张乾, 徐静馨, 张深根, 朱法华, 张柏林. Mn基低温脱硝催化剂性能优化研究进展[J]. 北科大: 工程科学 学报, 2025, 47(1): 142-157. doi: 10.13374/j.issn2095-9389.2024.04.15.004

XU Yun, WU Boyu, ZHUANG Ke, ZHANG Qian, XU Jingxin, ZHANG Shengen, ZHU Fahua, ZHANG Bolin. Progress of performance optimization for Mn-based SCR catalysts at low temperature[J]. *Chinese Journal of Engineering*, 2025, 47(1): 142–157. doi: 10.13374/j.issn2095–9389.2024.04.15.004

在线阅读 View online: https://doi.org/10.13374/j.issn2095-9389.2024.04.15.004

您可能感兴趣的其他文章

Articles you may be interested in

MnO_vFeO_v/TiO₂ZrO₂CeO₂低温选择性催化还原NO_v和抗毒性研究

Low-temperature selective catalytic reduction of NO₂ and anti-toxicity of MnO₂FeO₂/TiO₂ZrO₂CeO₂

工程科学学报. 2020, 42(3): 321 https://doi.org/10.13374/j.issn2095-9389.2019.11.05.002

改性炼钢污泥催化剂的催化脱硝性能

Study of the catalytic denitrification activity of a modified steelmaking sludge catalyst 工程科学学报. 2023, 45(3): 499 https://doi.org/10.13374/j.issn2095-9389.2021.12.16.006

冶金含铁尘泥制备的MnCe掺杂Fe基催化剂及特性

Preparation and characteristics of MnCe-doped Fe-based catalysts using metallurgical dust and mud containing iron 工程科学学报. 2024, 46(3): 407 https://doi.org/10.13374/j.issn2095-9389.2023.04.27.002

微波辅助炭基催化剂催化热解生物质的研究进展

Research progress on biomass catalytic pyrolysis *via* microwave effects combined with carbon-based catalysts 工程科学学报. 2023, 45(9): 1592 https://doi.org/10.13374/j.issn2095-9389.2022.11.16.002

甲苯催化氧化研究进展

Current progress on catalytic oxidation of toluene: a review 工程科学学报. 2024, 46(7): 1286 https://doi.org/10.13374/j.issn2095-9389.2023.11.17.003

直接甲醇燃料电池(DMFC)阳极过渡金属基催化剂的研究进展

Research progress in anode transition metal-based catalysts for direct methanol fuel cell 工程科学学报. 2022, 44(4): 625 https://doi.org/10.13374/j.issn2095-9389.2021.09.30.005 工程科学学报,第 47 卷,第 1 期: 142-157, 2025 年 1 月 Chinese Journal of Engineering, Vol. 47, No. 1: 142-157, January 2025 https://doi.org/10.13374/j.issn2095-9389.2024.04.15.004; http://cje.ustb.edu.cn

Mn 基低温脱硝催化剂性能优化研究进展

许 芸1),邬博宇2),庄 柯1),张 乾1),徐静馨1),张深根2),朱法华1),张柏林2)◎

1) 国家能源集团科学技术研究院有限公司低碳智能燃煤发电与超净排放全国重点实验室,南京 210023 2) 北京科技大学新材料技术研究院,北京 100083

⊠通信作者, E-mail: zhangbolin@ustb.edu.cn

摘 要 氮氧化物(NO_x)是我国首要大气污染物,主要采用选择性催化还原(SCR)技术进行排放控制.研发高效、稳定的低温 脱硝催化剂可避免高能耗的烟气再热,具有显著的节能降碳效益. 锰氧化物(MnO_x)因多变的化学态和丰富的晶格缺陷而表 现出优良的氧化还原性能,并具有极强的表面酸性,在催化还原 NO_x反应中表现出良好的低温活性,但 N₂ 选择性低、抗 H₂O/SO₂性能差,难以实现长期的高效稳定脱硝.近年来,改性提升 Mn 基催化剂的研究十分广泛,加快了 Mn 基催化剂工业应用 的步伐.本文从低温活性、N₂选择性和稳定性三个方面,总结了 Mn 基催化剂的脱硝反应机理、元素掺杂改性、催化剂结构 设计等最新研究进展,指出了当前的研究重点和难点,可为下一步研究提供参考. 关键词 氮氧化物;选择性催化还原;锰基催化剂;N₂选择性;稳定性;元素掺杂

Progress of performance optimization for Mn-based SCR catalysts at low temperature

XU Yun¹), WU Boyu²), ZHUANG Ke¹), ZHANG Qian¹), XU Jingxin¹), ZHANG Shengen²), ZHU Fahua¹), ZHANG Bolin²⁾

1) State Key Laboratory of Low-carbon Smart Coal-fired Power Generation and Ultra-clean Emission, China Energy Science and Technology Research Institute Co., Ltd., Nanjing 210023, China

2) Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China Corresponding author, E-mail: zhangbolin@ustb.edu.cn

ABSTRACT The emission of nitrogen oxides (NO_x), the primary air pollutant in China, reached 8.96 million tons in 2022, considerably higher than the emissions of volatile organic compounds, particulate matter, and sulfur dioxide (SO₂). NO_x emission control is the focus and challenge with respect to air pollution management in China. Selective catalytic reduction (SCR) is widely employed to control the emission of NO_x in industrial flue gas because of its high efficiency and stability, and it can be used to realize ultralow NO_x emission. A catalyst is a vital factor of the SCR technology. Commercial V₂O₅/TiO₂ catalysts have satisfactory tolerance to poisoning factors such as SO₂ and H₂O, and the operating temperature is generally in the high-temperature range of 300–420 °C. Although the catalysts can be more effectively adapted to the medium-temperature range of 200–300 °C by increasing the loading amount of V₂O₅, their low-temperature activity is poor at temperatures less than 200 °C. The development of efficient and stable catalysts for SCR at low temperatures can prevent the high energy consumption associated with flue gas reheating, resulting in considerable energy saving and carbon reduction benefits. Manganese oxides (MnO_x) exhibit remarkable redox properties due to variable chemical states and abundant lattice defects, and they have considerably strong surface acidity, showing satisfactory low-temperature activity in the reaction of catalytic reduction of NO_x. However, Mn-based catalysts suffer poor resistance to H₂O/SO₂, making it difficult to achieve efficient and stable denitrification (i.e., deNO_x) over an extended period of time. They have poor N₂ selectivity and are prone to catalytic conversion

收稿日期:2024-04-15

基金项目:国家自然科学基金资助项目(52204414);低碳智能燃煤发电与超净排放全国重点实验室开放课题(D2023FK085);国家节能低碳材料生产应用示范平台项目(TC220H06N);佛山市人民政府科技创新专项资金项目(BK22BE001)

of NO_x into the greenhouse gas N₂O. Modification and enhancement of Mn-based catalysts have been extensively researched in recent years, which has expedited the pace of their industrial application. This study summarizes the latest research progress on reaction mechanism, elemental doping, and structure design of Mn-based catalysts in the aspects of low-temperature activity, N₂ selectivity, and stability. Elemental doping modification is the primary method for optimizing the N₂ selectivity and H₂O/SO₂ tolerance of these catalysts. In terms of comprehensive low-temperature activity, N₂ selectivity, and stability, the doping components should have satisfactory oxygen storage–release ability to provide abundant oxygen vacancies and high stability to disperse MnO_x and increase the tolerance to H₂O and SO₂; appropriate structural design can block the poisoning of H₂O and SO₂; in particular, surface hydrophobic modification can weaken the promotion effect of H₂O on poisoning of SO₂. In conclusion, this study indicates the ongoing research focuses and difficulties, which can provide references for future research.

KEY WORDS nitrogen oxides; selective catalytic reduction; Mn-based catalysts; N₂ selectivity; stability; element doping

氮氧化物(NO_x)是我国首要大气污染物,2022年 全国排放量仍高达 895.7万吨,远高于挥发性有机 物、颗粒物和二氧化硫(SO₂)排放量的 566.1、493.4 和 243.5万吨,是我国大气污染物减排的重点和难 点^[1-2].选择性催化还原(SCR)技术因其高效、稳定 而被广泛应用于工业烟气脱硝,可实现 NO_x 的超 低排放,技术核心是脱硝催化剂.现有商用 V₂O₅/TiO₂ 脱硝催化剂对 SO₂、颗粒物、H₂O 等毒化因子具有 良好的耐受性,工作温度一般为 300~420 ℃ 的高 温区间,通过增加 V₂O₅ 负载量可使催化剂较好地 适应 200~300 ℃ 的中温区间,但其在 200 ℃ 以下 的低温脱硝活性差^[3].研发适应于低温条件下的新 型脱硝催化剂可避免高能耗的烟气再热,具有显 著的节能降碳效益.

锰氧化物(MnO_x)因多变的化学态和丰富的晶 格缺陷而表现出优良的氧化还原性能,并具有极 强的表面酸性,在催化还原 NO_x反应中表现出良 好的低温活性,是新型低温脱硝催化剂的主要研 究对象^[4-5]. 与 V₂O₅ 不同, MnO_x 易与 SO₂ 等结合形 成硫酸盐而致催化剂不可逆失活^[6]. 改性以提高对 SO₂ 等毒化因子的耐受性是当前 Mn 基催化剂研 发的关键难点之一,但随着 SO₂、颗粒物超低排放 的逐步实现,为 Mn 基催化剂的长效服役提供了更 好的条件,使节能降碳的低温 SCR 技术更具应用 前景. 此外, Mn 基催化剂的 N₂ 选择性差,易将 NO_x 催化转化为温室气体 N₂O,且其高活性温度区间 窄,150 ℃ 以下的高选择性脱硝性能仍有待进一 步提升^[7-8].

新型 Mn 基低温脱硝催化剂的研究一直是低 温烟气脱硝领域关注的热点. Wei 等^[9] 总结了 Mn 基脱硝催化剂的化学失活机制,综述了提高 Mn 基 催化剂抗 H₂O、SO₂ 和碱/重金属离子的研究进展. Xu 等^[10] 总结了元素掺杂、载体选择、制备方法等 改进 Mn 基催化剂抗 H₂O 和 SO₂ 性能的研究进展. 熊尚超等^[11] 综述了对 Mn 基脱硝催化剂具有毒害 作用的 SO₂、碱/重金属的致失活机制及耐毒对策. 目前,针对 Mn 基催化剂活性、选择性和稳定性研 究缺乏较为全面的总结.本文针对催化剂的低温 活性、N₂选择性和稳定性三个基本特性,总结了 Mn 基催化剂的脱硝反应机理、元素掺杂改性、催 化剂结构设计等的最新研究进展,指出了 Mn 基脱 硝催化剂当前研究的重点和难点,可为下一步研 究提供参考.

1 Mn 基脱硝催化剂的低温活性

1.1 催化剂活性评价方法

催化活性是评价催化剂性能优劣的首要指标,决定了催化过程反应物的转化效率.实验室研究常以 NO转化率 $\eta(\eta = ([NO]_{in} - [NO]_{out})/[NO]_{in}, [NO]_{in}、[NO]_{out}分别为入口和出口的 NO 体积分数)来评价脱硝催化剂的活性.其评价平台一般如图1所示^[12],采用烟气模拟装置配制 NO、O₂、SO₂、H₂O 和 N₂ 模拟工业烟气,通入 NH₃ 后经过脱硝催化剂即可进行 SCR 反应,最终通过烟气分析仪检测反应前后 NO 的浓度即可评价 NO 转化率.NO 转化率虽不能表征催化剂的本征特性,但能较好地反应在特定条件下催化转化 NO 的程度.$

1.2 单一 Mn 基催化剂

Mn 基低温脱硝催化剂的研究已有数十年的 历史,其优异的低温脱硝活性获得了研究人员的 认可,是当前低温脱硝催化剂的主要研究对象^[13]. Kapteijn 等^[14]在 1994年即研究发现单一 MnO_x 的 脱硝活性与 Mn 的化学态密切相关,相同比表面积 下 MnO_x 的活性排序为 MnO₂ > Mn₅O₈ > Mn₂O₃ > Mn₃O₄ > MnO,即 MnO_x 的脱硝活性随着 Mn 价态 的增高而提升.该工作为 MnO_x 催化剂的研究提供 了参考,后续研究更注重制备以 Mn⁴⁺为主的高价 态、多价态 MnO_x 催化剂. Chen 等^[15]研究了沉淀 剂对 MnO_x 催化剂结构和活性的影响,结果表明采用(NH₄)₂CO₃和NH₄OH 沉淀分别获得微球形 Mn₂O₃和不规则纳米颗粒 Mn₅O₈为主的物相,以 Mn₂O₃物相为主的催化剂具有更佳的氧化还原性能和表面酸性,因而获得了更优的脱硝活性,在175℃可达到85%的NO转化率.该研究还表明, Mn 基催化剂中高价态 Mn 有利于形成较优的氧化还原循环.

Gu 等^[16] 分别以 Mn(CH₃COO)₂ 和 Mn(NO₃)₂ 作 为前驱体经浸渍法制备 MnO_x/SiO₂ 催化剂,发现两 种前驱体制备的催化剂中 Mn 的主要物相分别 是 Mn₂O₃ 和 MnO₂,而 MnO₂ 催化剂的中间反应构 型 NH₂OH 和 NHNO 的分解活化能更低,因此以 Mn(NO₃)₂ 作为前驱体制备的催化剂活性更高,在 150 ℃ 可达到 97% 的 NO 转化率.与此结论不同 的是,Wang 等^[17] 通过 MgAlO_x 浸渍负载了高分散 MnO_x 催化剂,对比分析了 Mn(CH₃COO)₂、Mn(NO₃)₂ 和 MnSO₄ 作为前驱体的效果,发现采用 Mn(CH₃OO)₂ 浸渍后于 800 ℃ 焙烧获得的 MnO_x/MgAlO_x 催化剂 具有最高的 Mn⁴⁺浓度,在 150 ℃ 可达到 98% 的 NO 转化率. Dong 等^[18] 将 KMnO₄ 和 Mn(NO₃)₂ 共同球 磨制备了 MnO₂ 催化剂(图 2),催化剂具有高的比表 面积、丰富的氧空位和酸性位点,在 75 ℃ 和 100 ℃ 的 NO 转化率分别达到了 94% 和 100%. 以上研究 均表明,高价态的 MnO_x在 SCR 反应中表现出更 高的脱硝活性.

高价态 MnO2 的晶型对脱硝反应同样具有较 大影响. Liang 等^[19]利用密度泛函理论(DFT)分析 了 α -、 β -、 γ -和 δ -MnO₂ 的理化性质,表明 MnO₂ 的 高催化活性主要源于其二配位 O 与 NH, 中 H 的 强结合能力, 而 γ-MnO₂ 对 NH₃ 的吸附能力最强, 对 NO 的捕获能力也相对较高;当 Mn 与 W、Mo 配位时, α-MnO2表面形成 Mn-O-W或 Mn-O-Mo键,可改变电子分布特征而提高对 NH₃和 NO 吸附,并减小脱氢阻碍.Du等^[20]采用浸渍法制备 了 FeO_x/β-MnO₂ 催化剂, 使 Fe-Mn 协同作用以提高 催化剂的氧化还原性能和表面酸性,结果发现负 载 FeO_x 后 β-MnO₂ 在 150 °C 的 NO 转化率由 57% 提 升至了接近 100%. Song 等[21] 将 KMnO4 和 Mn(NO3)2 共同球磨制备了 β-MnO2, 添加 Ce(NO3)3 和 C16H36 O₄Ti制备了Ce-Ti双原子高分散负载于β-MnO₂ 的催化剂,在100 ℃获得了接近100%的NO转化 率,分析表明 Ce-Ti 双原子增强了 Mn 对 NH,的吸

Fig.2 Synthesis procedures for the preparation of the MnO₂ catalyst^[18]

附能力,从而提升了催化剂的活性. Zhou 等^[22] 以 合成 α -FeOOH 浸渍负载 (Mn(CH₃COO)₂), 焙烧获得 MnO_x/ α -Fe₂O₃ 催化剂, 在 200 ℃ 以 72000 h⁻¹ 的体积 空速(Gas hourly space velocity, GHSV)达到了 90% 以上的 NO 转化率.

1.3 元素掺杂的 Mn 基催化剂

SCR 反应依赖于脱硝催化剂的表面酸性和氧 化还原性. MnO, 同时具有优良的表面酸性和氧化 还原性能,而通过元素掺杂可通过协同效应进一 步优化,即复合基催化剂中一组分提供更优的表 面酸性,而另一组分提供更佳的氧化还原性,从而 获得比单一组分催化剂更优的脱硝活性.稀土元 素的表面酸性不佳,但具有优异的储释氧能力,采 用 Ce、Sm、La 等稀土元素掺杂可极大地丰富 Mn 基催化剂的氧空位,从而提高其脱硝活性^[3,23].Lin 等^[24]采用溶胶-凝胶法制备的 MnO_x-CeO₂/TiO₂催 化剂在 150 ℃ 达到了 96% 的 NO 转化率, 远高于 MnO_x/TiO₂和CeO₂/TiO₂催化剂,分析表明Ce的掺 杂极大地丰富了 Mn 基催化剂的氧空位,降低了催 化反应的活化能(图3). Li 等^[25] 研究发现 Mn 掺杂 可显著提升 CeO2 表面氧空位储量,并形成超氧化 物和过氧化物物种,能有效地将 NO 氧化为 NO₂, 从而基于"快速 SCR"反应实现高效脱硝. Serrano-Lotina 等^[26] 采用浸渍法制备了 Mn-Ce、Mn-Co 和 Mn-Fe双金属氧化物催化剂,发现添加Ce的Mn-Ce 催化剂活性最佳, 在 170 ℃ 达到了 88% 的 NO 转 化率,其次是添加 Co 和 Fe. Zhang 等^[27]采用 NaOH 改性粉煤灰浸渍负载 Mn-Ce 催化剂, 在 200℃ 可 获得约 85% 的 NO 转化率.

Kong 等^[28]采用 HCl 溶液处理含钛高炉渣后 作为载体,经浸渍负载制备 MnO_x--CeO₂/含钛高炉 渣催化剂,可实现高炉渣的利用并降低脱硝成本, 但催化剂在 200 ℃ 才获得高于 80% 的 NO 转化 率,明显低于采用钛白粉制备的催化剂.此外,该 作者采用未经 HCl 处理的高炉渣负载的 Mn-Ce 催 化剂在 200 ℃ 仅获得了 52% 的 NO 转化率^[29]. Li 等^[30] 发现在摩尔比 Mn/Ce=1/3 的 Mn-Ce 催化剂中 添加摩尔分数为3%的Co,可较好的提高催化剂 表面氧、Mn4+、Ce3+和 Co3+含量,在87℃以上实现 了超过 80% 的 NO 转化率. Zhao 等^[31] 采用 Sm 改 性 Mn-Ce 催化剂并负载于蜂窝状堇青石, 当摩尔 比 Sm/Mn=0.1 时,催化剂在 60 ℃ 即可获得 80% 的 NO 转化率. Nie 等^[32]发现采用 Ce、Cu 共掺杂 可提高 MnO_x 在 γ -Al₂O₃ 表面的分散度, 制备的 Mn-Ce--Cu/y-Al₂O3 催化剂在 125 ℃ 获得了约 90% 的 NO 转化率. Wang 等[33] 采用溶胶-凝胶法制备了 Mn-Ce-VO_x/TiO₂催化剂,在130 ℃获得了100%的NO 转化率.

除了稀土元素,其他过渡金属元素、非金属元 素的掺杂均能通过增加 MnO_x 的晶格缺陷等方式 丰富氧空位,提高催化剂的氧化还原性能. Zhao 等^[34] 采用溶剂热法制备了 Mn₄FeO_x、MnFeO_x 和 MnFe₄O_x 催化剂,发现 MnFeO_x 催化剂中 Mn、Fe 元素高度 分散,具有较强的表面还原性能和丰富的氧空位, 其 NO 转化率在 120 ℃ 可达到 80%. Chen 等^[35] 研 究了沉淀剂对共沉淀法制备的 MnFeO_x 催化剂理

Fig.3 Enriching the oxygen vacancies of MnO_x via doping with Ce and the activity comparison of MnO_x/TiO₂, CeO₂/TiO₂, and MnO_x-CeO₂/TiO₂^[24]

化性质的影响,发现沉淀剂的阴离子可决定催 化剂的物相,而阳离子可影响催化剂的形貌,以 CO_3^{2-} 和 OH 沉淀可分别获得 Mn₂O₃和 Mn₅O₈相, 且以 CO_3^{2-} 沉淀获得的 MnFeO_x 催化剂在 75 ℃ 即 可获得超过 90% 的 NO 转化率. Zhou 等^[36] 采用分级 氧化法制备的 Mn–Fe 催化剂在 150 ℃ 获得了 91.3% 的 NO 转化率和 100% 的 N₂ 选择性. Kim 等^[37] 采 用浸渍法制备了 Mn–V–Sb 复合基催化剂,当摩尔 比 Mn/V=0.5 时,催化剂形成了丰富的氧空位和表 面活性氧,通过提高 NO 至 NO₂ 的氧化能力,优化 了催化剂的低温脱硝活性. Xu 等^[38] 在溶胶–凝胶 法制备 Mn–Fe 催化剂的过程添加 (NH₄)₂SO₄, 拓宽 了 Mn–Fe 催化剂在高温段的高活性区间,但其低 温活性不佳,合成的 5Fe–3Mn–S/TiO₂–SG 催化剂 在 200 ℃ 仅有 67% 的 NO 转化率.

NO 催化还原通常遵循 Langmuir–Hinshelwood (L–H)和 Eley–Rideal(E–R)机制,其反应路径均涉 及 NO 或 NH₃ 先被氧化后还原的过程. Ren 等^[39] 基于 NO_x 还原之前需被选择性催化氧化(SCO), 采用广泛应用于 SCO 反应的 RuO_x 掺杂改性 Mn–Ce 催化剂,发现掺杂 RuO_x 的催化剂在 140 °C 达到了 100% 的 NO 转化率和 87% 的 N₂ 选择性,分析表 明 Ru 掺杂增强了 Ce、Mn、Ti 之间的相互作用,并 能促进中间产物由稳定的双齿硝酸基向活跃的单 齿硝酸基转变,从而基于 Mars–van Krevelen、Langmuir–Hinshelwood 和 Eley–Rideal 反应路径提升催 化活性.

2 Mn 基脱硝催化剂的 N_2 选择性

2.1 N₂O 生成机理

选择性是催化剂的重要指标之一. 国家标准 GB/T 38219—2019 规定脱硝催化剂的 N₂选择性计算方法为 $S = 1 - 2[N_2O]_{out}/([NO_x]_{in} - [NO_x]_{out} + [NH_3]_{in} - [NH_3]_{out})(其中[N_2O]_{out}为反应器出口 N_2O体积分数, [NO_x]_{in}和[NO_x]_{out}为反应器入口和出口 NO_x体积分数, [NH_3]_{in}和[NH_3]_{out}分别为反应器入$

口和出口 NH₃体积分数). MnO_x 脱硝催化剂在催 化脱硝过程易形成温室气体 N₂O,造成催化剂的 N₂选择性差. Zeng 等^[40]研究了 MnO_x -TiO₂ 催化剂 上 N₂O 的形成机制,发现 MnO_x 和 TiO₂分别作为 脱硝反应的主要氧化还原位点和酸性位点,当摩 尔比 Mn/Ti 增加时,氧化还原位点增多而酸性位 点减少,使 NH₃ 过度氧化(2NH₃+2O₂→N₂O+3H₂O)和 NO 非选择性还原(4NO+4NH₃+3O₂→4N₂O+6H₂O) 而形成 N₂O(图 4).该研究指出改善 MnO_x 的分散 性和提高催化剂表面酸性,是优化 Mn 基催化剂 N₂选择性的可行策略.

高价态 MnO_x具有较强的氧化还原性能,使其 获得了优良的脱硝活性,但过度的氧化能力导致 NH,直接氧化或 NO 非选择性还原形成 N₂O. N₂O 的形成与反应温度有显著关联,随着反应温度的 升高,在同一催化剂上 N₂O 的生成量可显著增加. Liu 等^[41] 采用溶胶浸渍法制备了 TiO_x 纳米棒负载 的 Mn 基催化剂, 在 200 ℃ 获得了 100% 的 NO 转 化率,但 N2选择性仅有 55%. Kim 等[42] 发现 MnOr 负载于二维片状 TiO₂ 的活性要优于负载于其他锐 钛矿 TiO₂,当 Mn 负载质量分数达到 12% 时,催化剂 在 150 ℃ 的 NO 转化率可达到 96%, 而 N, 选择性 接近 100%. Zhang 等^[43] 将 KMnO₄ 和 Mn(CH₃COO)₂ 原位沉积于蒙脱石,形成了高比表面积、海绵状孔 结构的 MnO_r 催化剂, 在 150 ℃ 同样获得了接近 100%的 NO转化率和 100%的 N2 选择性. Li 等[44] 采用 KMnO4 和 MnSO4 沉淀制备的 MnOx 催化剂 在 75 ℃即可获得 100% 的 NO 转化率, 而在沉淀 过程采用乳酸菌进行生物矿化可使生物质与 Mn 之间形成 Mn-O-C 和 Mn-O-N 结构, 并提供 更多的氧空位和更高的 Mn³⁺/Mn 比, 从而调控 Mn 基催化剂的表面氧化性能以改善 N2 选择性. 由此 可见, Mn 基催化剂在 150 ℃ 以下, 其 N₂ 选择性相 对较高,而随着温度达到 200 ℃, N₂O 的生成量显 著增加.

Yang 等^[45]揭示了 Mn 基催化剂上的脱硝反

Fig.4 Possible SCR reaction route on MnTi catalyst (purple: MnO_x species; gray: TiO₂)^[40]

应机理及 N₂O 生成机制, NO_x 还原主要通过 Langmuir-Hinshelwood(L-H)和 Eley-Rideal(E-R)两种 路径机制进行(图 5), 当吸附于活性位点的—NO₂ 被氧化为—NO₃时,即可通过 L-H 路径与吸附态 NH₃ 反应形成 NH₄NO₃,进而分解形成 N₂O(NH₄NO₃→ N₂O+2H₂O);当吸附于活性位点的—NH₂ 被氧化 为—NH 时,即可通过 E-R 路径与自由态 NO 反应 形成 N₂O.研究表明 NO_x 在 Mn 基催化剂上的还原 路径受反应温度的影响显著,在反应温度低于 150 ℃ 时主要遵循 L-H 反应路径,而在较高温度下主要 遵循 E-R 反应路径^[46-47].

图 5 Mn-Fe 尖晶石催化剂上 L-H 和 E-R 机制路径示意图^[45] Fig.5 SCR reaction through the Langmuir-Hinshelwood (L-H) and Eley-Rideal (E-R) mechanisms over Mn-Fe spinel catalyst^[45]

2.2 元素掺杂调控 N₂ 选择性

通过元素掺杂调控 MnO_x 催化剂的氧化还原 性能, 优化表面酸性, 是提升 N₂ 选择性的重要途 径. Zhang 等^[6,48] 发现采用 Zr-Ti 共同掺杂 Mn 基 催化剂可使 MnO_x 更为分散,降低其催化氧化能 力,从而抑制 N₂O 的形成,而 Zr、Ti 分别单独掺杂 制备的 Mn-Zr 和 Mn-Ti 催化剂 N₂ 选择性不佳. Zhang 等^[12] 采用共沉淀法制备的 Mn₆Zr 催化剂在 125 ℃ 获得了 96% 的 NO 转化率,但其 N₂ 选择性 仅为 85% 左右,并随着反应温度的升高显著下降. Che 等^[49] 采用无定形 ZrTiO_x 负载并锚定高度分散 的 MnO_x,通过 Ti⁴⁺和 Zr⁴⁺连接的 O 共同桥接 Mn³⁺ (图 6),调节 MnO_x 的氧化性能,实现了对 Mn 基催 化剂 N₂ 选择性的调控,催化剂在 120 ℃ 获得了 90% 以上的 NO 转化率和 95% 以上的 N₂ 选择性.

稀土元素掺杂同样广泛应用于优化 MnO_x 的 氧化还原性能,以提升 N_2 选择性. Gevers 等^[50] 研 充发现 Ce 的添加可提高 Mn-Ti 基催化剂的比表 面积和 Mn 的分散性,使催化剂中 Mn 组分由结晶 态转变为无定型的分散态,削弱 Mn 基催化剂的 氧化能力(图 7),阻碍了反应中间产物被进一步氧 化形成 N_2O ,从而提高了 N_2 选择性. Liu 等^[51]则制 备了以 CeO₂ 为外壳的核壳结构 CeO₂@MnO₂ 催 化剂,在 100 ℃获得了 95% 的 NO 转化率和 100% 的 N_2 选择性. Zhao 等^[52]采用 FeVO₄ 纳米棒负载 Mn-Ce 制备了 $Mn_{0.2}Ce_{0.2}$ /FeVO₄ 催化剂,在 90 ℃ 即 可获得 90% 的 NO 转化率和 100% 的 N_2 选择性. Liu 等^[53]采用原位沉积法制备了 Mn-La_{0.5}/TiO₂ 催 化剂,在 105 ℃即达到了 80% 的 NO 转化率,且在 150 ℃以下具有优异的 N_2 选择性. He 等^[54]构筑

图 6 通过构建无定形载体在高 N₂选择性催化剂上的反应机理^[49]

Fig.6 Reaction mechanism over highly N₂ selective catalyst via the construction of amorphous support⁽⁴⁹⁾

了由 TiO₂-{001}晶面负载的 Sm-MnO_x 催化剂,在 140 ℃获得了 80% 的 NO 转化率和 85% 的 N₂选 择性,其催化脱硝反应遵循 Langmuir-Hinshelwood 机理. Xu 等^[55] 采用浸渍法制备的 Dy 掺杂 Dy_{0.15}Mn/ TiO₂ 催化剂在 100 ℃ 可获得 98% 的 NO 转化率和 接近 100% 的 N₂选择性. Niu 等^[56] 发现 Tm 可提高 催化剂表面 Mn⁴⁺和活性氧浓度等,采用浸渍法制 备的 Tm 改性 Tm_{0.1}Mn/TiO₂ 催化剂在 120 ℃ 获得 了 97% 的 NO 转化率和 100% 的 N₂选择性,其反 应主要通过 Eley-Rideal 机制的反应路径.

在 MnO_x 中掺杂加入非金属元素同样可以分 散 Mn 位点, 起到调控 MnO_x 氧化还原性能的目的. Wu 等^[57] 发现在 MnO_x 催化剂中加入 SiO₂ 使 NO 转化率有所下降而 N₂ 选择性提升, 在 150 ℃ 的 NO 转化率由 99% 下降至 95%, N₂ 选择性由 65% 提高 至 85%, 同时基于 DFT 计算揭示了该催化剂催化 还原 NO 的反应路径如图 8 所示.

图 8 NH₃ 激活和 NO 激活的 NH₃-SCR 催化循环示意图^[57] Fig.8 NH₃-activated and NO-activated NH₃-SCR data of the NO_x catalytic cycle^[57]

总体而言, MnO_x的较强氧化还原性能影响了 NO_x的还原路径, 使 NO_x转化为 N₂O 致 N₂选择性 低,影响了 Mn 基催化剂的应用效果. MnO_x产生较 强氧化还原性能的重要原因之一是高价态 Mn 位 点的聚集,通过元素掺杂使 MnO_x更加分散可削弱 其氧化还原性能,从而实现对 N₂选择性的优化. 需要注意,削弱 MnO_x的氧化还原性能也意味着脱 硝活性的下降.实际上, Mn 基催化剂的 NO 转化 率在中低温范围内随着温度的升高而提升,而 N₂ 选择性则随着 NO 转化率的提升而下降,催化剂在 应用过程受 H₂O 和 SO₂影响同样会使 N₂选择性 上升. Zhang 等^[58]研究认为烟气中 H₂O 和 SO₂同 样能抑制 NO 和 NH₃ 的过度氧化,阻碍催化过程 N₂O 的形成,从而使 N₂选择性提高.由此可见,元 素掺杂等手段改进 Mn 基催化剂的 N₂选择性需调 控活性和选择性之间的平衡,最佳方法是在调控 催化还原反应路径的前提下,不影响脱硝活性.

3 Mn 基催化剂的稳定性

催化剂的稳定性决定其能否长效服役. Mn 基 脱硝催化剂在H₂O和SO₂作用下易失活,是限制 其工业应用的关键.如Li等^[59]采用溶剂热法制备 的 Fe 掺杂 MnO_x 催化剂在 100 ℃ 获得了 90% 的 NO转化率,在150 ℃ 经体积分数为 1×10⁻⁴ 的 SO₂ 处理 6 h 后转化率显著下降至低于 10%, 于 400 ℃ 热处理再生后 100 ℃ 的 NO 转化率也仅恢复到 18%. 这表明 Mn 活性组分在 SO2 作用下易导致不可 逆的失活. Fan 等^[60] 研究了 Mn₃O₄ 催化剂在 100~ 250 ℃温度区间的抗 SO2中毒性能,结果表明在 150 ℃ 时 SO₂ 最易与 Mn 结合形成盐而致不可逆 失活. Song 等^[61] 采用电纺丝法制备了 MnFeNb₀₂ Nd₀₁O_x(摩尔比 Nb/Mn=0.2、Nd/Mn=0.1)纳米丝状 催化剂,在120℃以空速36000 h⁻¹反应达到了约 95%的 NO转化率,但在通入体积分数为 1×10⁻⁴ 的 SO2 后 NO 转化率下降至了 54%. Xu 等^[62] 采用 柠檬酸发泡法制备的摩尔比 Mn/Fe=0.2 的 MnFeOr 催化剂,在 50 ℃ 即可获得 80% 的 NO 转化率,且在 体积分数 5% 的 H₂O 与体积分数为 5×10⁻⁵ 的 SO₂ 条件下短暂反应仍能保持良好的活性,但未分析在 H₂O 和 SO₂ 条件下催化剂的持续稳定性.强化 Mn 基催化剂对 H₂O 和 SO₂ 的耐受性已成为当前的研 究重点,一般可通过元素掺杂、结构设计等手段.

3.1 元素掺杂提升稳定性

Ce 的掺杂是提高 Mn 基催化剂对 SO₂ 耐受性 的常用方法.研究人员认为 Ce 比 Mn 更容易与 SO₂ 结合,从而可作为牺牲位点将 SO₂ 对 Mn 的毒化转 移至 Ce,但基于该原理在理论上并不能保证 Mn 基催化剂的长期稳定,即当 Ce 组分沉积硫酸盐饱 和后, Mn 组分将被 SO₂ 毒化,从而难以确保 Mn 基 催化剂的长期稳定运行^[63].如 Ruiz-Martínez 等^[64] 研究发现添加 Ce 将导致 Mn/TiO₂ 催化剂在 150 ℃ 的催化活性下降,可在一定程度上提高 Mn 基催化 剂对 SO₂ 的耐受性,但在长期使用中 SO₂ 仍会导 致 Mn、Ce 硫酸盐的形成,使其产生不可逆的失活.

Wang 等^[65]采用溶胶-凝胶法制备了 MnO_x-CeO₂/TiO₂催化剂,在 200 ℃ 获得了良好的 SO₂ 耐 受性,分析发现 SO2 条件的硫酸盐优先在 Ce 组分 上形成,从而保护了 Mn 组分. Qin 等^[66] 采用水热 法合成了花朵形状 TiO,并通过浸渍法制备了 MnCe/TiO2 催化剂,在 150 ℃ 获得了 95% 的 NO 转 化率和 98% 的 N₂ 选择性, 于 200 ℃ 在体积分数 5% 的 H₂O 和体积分数为 1×10⁻⁴ 的 SO₂ 条件下反应 11 h 后 NO 转化率由 100% 下降至 89%. Han 等^[67]采用 KMnO₄和Ce(NO₃),共沉淀负载于氧化石墨烯,经 120 ℃ 水热反应、110 ℃ 干燥后获得摩尔比 Mn/Ce= 3的催化剂,测试表明该催化剂在80℃即表现出 接近 100% 的 NO 转化率, 在 160 ℃ 以体积空速 14400 h⁻¹、体积分数为 1×10⁻⁴ 的 SO₂ 和体积分数 为 5%的 H₂O条件下测试 6 h 后, NO转化率由 100% 下降至了 84%. Qing 等^[68] 在 MnCe/Ti 催化剂 中掺杂 SiO₂抑制了锐钛矿型 TiO₂的结晶团聚,并 提升了催化剂比表面积,且 SiO₂ 掺杂降低了催化 剂对 SO₂的吸附能力和提升了 SO₃的脱附性能, 缓解了 Mn 氧化物的硫酸盐化, 从而优化了 Mn-Ce 催化剂的抗 SO,性能.

元素掺杂改进 Mn 基催化剂的研究已十分广 泛,过渡金属元素、主族金属元素和非金属元素都 被广泛用于掺杂改进 Mn 基催化剂. Chen 等^[69] 采 用聚乙二醇沉淀法制备了 Sm 掺杂的 MnFeO_x 催 化剂,当摩尔比 Sm/Mn=0.1 时,催化剂在 75 ℃ 即 获得了 100% 的 NO 转化率,并于 200 ℃ 在体积分 数 5%的 H₂O 和体积分数为 1×10⁻⁴的 SO₂条件下 反应 3 h 后仍能保持 90%的 NO 转化率,分析表明 Sm 的添加诱导了 SO₂ 与 Fe 和 Sm 优先结合,从而 保护了 Mn 组分.Li 等^[70]采用一锅法合成的 SmCeMn/ Ti 催化剂在 175 ℃ 获得了 100%的 NO 转化率,分 析发现催化剂中 Mn 提供了大量的 Brønsted 酸性 位点和 Mn⁴⁺, Ce 基于其优异的储释氧能力提供丰 富的氧空位,并与 Mn³⁺反应形成 Mn⁴⁺促进催化反 应循环, Sm 则更多地承受了 SO₂ 对 Mn 组分的作 用,从而提高了催化剂对 SO₂ 的耐受性.Huang 等^[71] 进一步采用稀土元素 Sm 和 Ho 改性 Mn–Ce/TiO₂ 催化剂,发现 Ho 可更好地提升催化剂表面酸性和 氧化还原性,从而提升 150 ℃ 以下低温活性,而 Sm 则能更好地提升抗 H₂O 和 SO₂ 中毒性能.

Wang 等^[72] 发现 La 和 Co 可提高 Mn⁴⁺和表面 活性氧含量, Mn–La–Co/TiO₂ 催化剂在 120 ℃ 以 上能获得高于 80% 的 NO 转化率, 并在体积分数 5% 的 H₂O 和体积分数为 5×10⁻⁵ 的 SO₂ 条件下反 应 2 h 仍能稳定保持 86% 的 NO 转化率(图 9). Zhang 等^[73] 采用浸渍法制备的 Ho_{0.2}Mn/TiO₂ 催化 剂在 140 ℃ 具有 98% 的 NO 转化率和 100% 的 N₂ 选择性, 180 ℃ 时添加体积分数 10% 的 H₂O 反应 5 h 后, NO 转化率由 100% 下降至 93%. 总体而言, 过渡金属元素掺杂提高 MnO_x 对 SO₂ 耐受性的原 理主要是以掺杂元素作为牺牲位点, 承受 SO₂ 的 毒化, 从而保护了 MnO_x, 但该途径未从根本上解 决 SO₂ 的毒化, 实验室反应数小时后即出现较大 幅度的 NO 转化率下降, 在实际应用中仍然难能实 现长期稳定.

元素掺杂的另一策略是调控催化剂对 SO₂的

图 9 Mn/TiO₂、Mn-La/TiO₂和 Mn-La-Co/TiO₂催化剂的抗 H₂O 和 SO₂性能^[72]

Fig.9 Water and sulfur tolerances of Mn/TiO₂, Mn–La/TiO₂, and Mn–La–Co/TiO₂ catalysts^[72]

吸附和氧化能力,从而抑制 MnSO₄、NH₄HSO₄和 (NH4)2SO4 的形成. Chen 等^[74] 采用"结晶-热解-氧 化"策略原位构建了F掺杂的Mn₃O₄催化剂,增强 了催化剂表面酸性, F取代 O 抑制了 SO2 与 Mn3+ 之间的电子迁移,使催化剂能选择性地将 NO 氧化 为NO₂, 而抑制 SO₂ 氧化为 SO₃, 因而催化剂于 160 ℃ 在体积分数 5%的 H₂O 和体积分数为 5×10⁻⁵的 SO2条件下反应6h后NO转化率仅由100%下降 至 83%. Xiong 等^[75] 采用 Cu 改性 Mn₃O₄ 尖晶石制 备 (Cu_{1.0}Mn_{2.0})_{1-δ}O₄ 催化剂,在 125 ℃ 获得了 90% 的 NO 转化率和较优的抗 H₂O 和 SO₂ 性能,分析 表明 SO₂ 在 Mn₃O₄ 表面以一Mn一O一S一O一Mn一 的形式存在,而Cu的添加分散了尖晶石表面的 Mn 元素, 减少了 MnSO₄ 的形成. Chen 等^[76] 发现采 用水热法制备的 MnCoOr 微球催化剂具有优异的 活性的稳定性, 当摩尔比 Mn/Co=1 时, 催化剂在 100 ℃即可获得 100% 的 NO 转化率和 85% 的 N, 选择性,并于175 ℃在体积分数5%的H₂O和体 积分数为 5×10⁻⁵ 的 SO₂条件下反应 10 h 仍能保持 NO转化率几乎不下降,其原因是Co可抑制SO2 作用下 MnSO₄ 的形成.

3.2 结构设计提高稳定性

通过对催化剂进行结构设计,构筑特殊结构 阻碍 SO₂ 对 MnO_x 的毒化,是提高 Mn 基催化剂对 SO₂ 耐受性的又一策略. Wu 等^[77] 以 MnCO₃ 尾矿制 备了比表面积高达 428.2 m²·g⁻¹ 的核壳结构 SiO₂@ MnO_x 催化剂,发现 Mn、Si 相互结合提高了对 NH₃ 的吸附能力,且 DFT 分析表明 SO₂ 在 SiO₂ 外壳的 吸附能 (E_{ads}) 最低(-2.07 eV),即 SiO₂ 外壳优先吸

附了 SO₂,从而保护了 Mn 活性组分(图 10),最终 该催化剂在 200 ℃ 获得了接近 100% 的 NO 转化 率和 96% 的 N₂ 选择性, 并于 225 ℃ 在体积分数 10%的 H₂O 和体积分数为 1×10⁻⁴的 SO₂条件下反 应 10 h 仍能保持 85% 的 NO 转化率. Li 等^[78] 经三 步合成 MnO_x@TiO₂@CeO₂核壳结构催化剂,内核 Mn、Ti可提供丰富的氧化还原位点,而外壳 CeO2 可提供丰富的酸性位点,极大地提高了催化剂对 NH3的吸附,从而提高催化剂在有H2O条件下的 活性. Jiang 等^[79]将 TiO₂(P25) 经水热处理制备为 钛纳米管(TiNTs),发现以该 TiNTs 作为载体制备 MnO_x-CeO₂催化剂可较好地提升N₂选择性,并能 使部分铵盐沉积于 TiNTs 内部,从而缓解管外部 活性物质的中毒,提高催化剂对 SO₂ 的耐受性.Li 等^[80]则发现了锐钛矿 TiO₂的不同晶面脱硝效果 的差异, Mn-Ce负载于暴露 {001} 面的 TiO2 比负载 于暴露 {101} 面的 TiO2 具有更高的活性和对 SO2 的耐受性,分析表明{001}面的五配位 Ti和二配位 O 能优先与 SO₂ 结合, 并抑制 NH₄HSO₄ 和 (NH₄)₂SO₄ 的形成.

H₂O 一般被认为是 SO₂ 吸附及转化形成硫酸 盐的促进剂,通过对催化剂进行表面疏水改性,避 免 H₂O 吸附于催化剂表面,从而抑制 SO₂ 的吸附 和转化,是强化 Mn 基催化剂稳定性的重要策略之 一.Li 等^[81]采用浸渍法以陶瓷滤芯(LDC)负载 Mn-Co 催化剂,在 100 ℃ 即获得了 99% 的 NO 转 化率,进一步添加聚四氟乙烯(PTFE)进行表面疏 水改性(图 11),提升了催化剂的低温抗 H₂O 性能. Zhang 等^[82]在 MnO_x纳米线中加入改性的 PTFE,

图 10 SiO₂ 外壳对 Mn 组分的保护作用及 SO₂ 在 Si、Mn 上的吸附能 (E_{ads})^[77]

Fig.10 Protection of SiO₂ shell on Mn component and adsorption energy (E_{ads}) of SO₂ on Si and Mn sites^[77]

图 11 (a) Mn-Co/LDC 和 (b ~ d) PTFE-Mn-Co/LDC 催化剂的图像 和接触角^[81]

Fig.11 Images and contact angles of (a) Mn–Co/LDC and (b–d) PTFE–Mn–Co/LDCs^{[S1]}

可使 MnO_x 纳米线更整齐地排列并获得表面疏水 性能,并提高催化剂的抗 H_2O 和 SO_2 性能. Li 等^[83] 采用八烷基三甲基溴化铵($C_{11}H_{26}BrN$)表面疏水改 性的蒙脱石负载 Mn-Ce,获得的催化剂虽在 200 °C 仅达到 80%的 NO 转化率,但在含 H_2O 体积分数 10%的烟气中表现出良好的稳定性. Zhu 等^[84]设 计了一种分层花朵形貌的 Mn-Co 催化剂,可提高 NH₃ 相对于 H_2O 的竞争吸附能力,从而提升催化 剂的抗 H_2O 性能.

综上所述,提高 Mn 基催化剂对 H₂O 和 SO₂ 耐 受性的主要方法可概括为:元素掺杂提供优先与 SO₂结合的牺牲位点,达到转移 SO₂毒化和保护 MnO_x的目的;元素掺杂抑制 SO₂向 SO₃的转化, 达到减少 MnSO₄、NH₄HSO₄和 (NH₄)₂SO₄形成的 目的;设计核壳结构、多孔结构、表面疏水结构等 保护结构,阻隔 H₂O 和 SO₂ 与 MnO_x 的直接接触.

表1总结了上文未列出的部分新型 Mn 基脱 硝催化剂的 NO 转化率、N₂选择性和抗 H₂O/SO₂ 性能,表中 NO_x和O₂为体积分数,摩尔比 NO_x/NH₃= 1,可以看出 Mn 基催化剂在体积分数 5%~10% 的 H₂O 和体积分数为 5×10⁻⁵~2×10⁻⁴的 SO₂条件 下,反应时长低于 24 h 时即均出现了较为明显的 活性下降.现有钒钛系脱硝催化剂一般要求达到 24000 h 的使用寿命,从当前 Mn 基催化剂抗 H₂O/ SO₂性能研究结果来看,仍难以满足长期稳定脱硝 的要求. Mn 基脱硝催化剂在低温条件下的抗 H₂O/ SO₂性能依然是当前研究的重点和难点.

3.3 H₂O和 SO₂对脱硝反应的积极作用

部分研究认为 SO2 对 Mn 基催化剂并非仅有

毒化作用,在特定条件下反而能对脱硝反应起到 一定的积极作用.如 Chen 等^[105]采用溶剂热法制 备了具有多孔结构的 Mn-Ce 催化剂, 在 150 ℃ 获 得了 92.6% 的 NO 转化率, 在模拟烟气中加入体积 分数为 2×10⁻⁴ 的 SO₂时, NO 转化率不降反升, 由 92.6% 提高到 97.8%, 分析认为 SO2 可抑制 NH3 过 度氧化形成 NO, 且形成的 Ce(SO₄)2 可作为 Brønsted 酸性位点,从而提高了脱硝效率.少量研究同样认 为H₂O对SO₂致失活不仅没有促进作用,反而可 在一定程度上缓解 SO2 的毒化作用. Ji 等[106] 研究 发现在 100 ℃ 的低温条件下, H₂O 可在 MnO_x-CeO₂ 催化剂表面缺陷上形成大量羟基,促使 SO2 在催 化剂表面形成亚硫酸盐而非硫酸盐,亚硫酸盐的 沉积对催化剂干扰较小,使脱硝反应依然能通过 E-R和L-H机制发生.该研究测试表明单一的SO, 可使 NO 转化率由 100% 下降至 20%, 而 H₂O+SO₂ 条件下 NO 转化率仅下降至 60%. An 等[107] 同样研 究了 H₂O 对 Mn 基催化剂的积极作用,采用水热 法制备的γ-MnO2催化剂 150 ℃ 获得了 100% 的 NO 转化率,分别于 250 ℃在 SO₂和 SO₂+H₂O 的条件 下致失活后,在350 ℃热处理再生,发现在SO₂条 件下失活后 150 ℃ 的 NO 转化率降到 40% 以下, 再 生后为80%左右,而在SO₂+H₂O条件下失活后NO 转化率仍接近 50%,再生后达到了 95% 以上.该研 究发现 H₂O 吸附于 MnO₂ 表面可作为 O₂ 的吸附 位点,并通过氢键降低吸附能垒,从而降低脱硝反 应的活性能(图 12).

4 结语

 MnO_x 优异的低温脱硝活性受到研究人员的 青睐,但 MnO_x 的 N_2 选择性低、抗 H_2O/SO_2 性能 差,难以实现长期的高效稳定脱硝,阻碍了其工业 应用.近年来对Mn基催化剂的研究十分广泛,相 关研究论文体量庞大,均主要围绕提升Mn基催化 剂的低温活性、 N_2 选择性和稳定性开展研究.本 文综述了Mn基脱硝催化剂国内外最新研究进展, 从低温活性、 N_2 选择性和稳定性三个方面,总结 了Mn基催化剂的脱硝反应机理、元素掺杂改性、 催化剂结构设计等的研究现状,主要结论如下:

(1) MnO_x 的脱硝活性随着 Mn 元素价态的升 高而提升,高价态 Mn 有利于形成较优的氧化还原 循环,具备多价态的 MnO_x 在催化剂中应以 MnO₂ 为主;元素掺杂可通过协同效应进一步优化 MnO_x 的表面酸性和氧化还原性能,即复合基催化剂中 一组分提供更优的表面酸性,而另一组分提供更

			, , , , , , , , , , , , , , , , , , , ,		2 2		,		
No.	Cat alysts	Preparation	$NO_x/10^{-6}, O_2/\%$	Gas flow or GHSV	NO conversion	N ₂ selectivity	H ₂ O/%, SO ₂ /10 ⁻⁶	NO conversion	Ref.
1	Mn–MP	hydrothermal	500, 5	300 mL · min ⁻¹	98% at 175 ℃	~ 25% at 175 ℃	0, 50 (175 ℃)	~ 100% to ~ 90% after 6 h	[85]
2	Mn-Ce/Zeolite	Hydrothermal + solid diffusion	500, 3	$36000 \ h^{-1}$	~ 97% at 200 ℃	~ 90% at 200 °C	0,100 (200 ℃)	~ 97% to ~ 20% after 4 h	[86]
3	Mn-Ce/sewage sludge	impregnation	400, 5	$130 \text{ mL} \cdot \text{min}^{-1}$	89% at 200 ℃		0, 100 (220 ℃)	~ 82% to 27% after ~ 2 h	[87]
4	Mn–Fe–La/TiO ₂	sol-gel	1000, 7	1000 mL \cdot min ⁻¹	100% at 160 ℃	100% at 160 ℃	0, 100 (200 ℃)	100% to 98% after 6 h	[88]
5	MnO _x /MgAl ₂ O ₄	Impregnation	500, 5	$100 \text{ mL} \cdot \text{min}^{-1}$	91% at 200 ℃	76% at 200 ℃	5, 50 (200 ℃)	91% to 34% after 8 h	[89]
6	Mn–Ce–Ti	precipitation	1000, 10	$200 \text{ mL} \cdot \text{min}^{-1}$	~ 95% at 200 ℃	~ 77% at 140 °C	10, 100 (225 °C)	100% to ~ 70% after 10 h	[<mark>90</mark>]
7	Mn-Ce/AC	Impregnation	500, 7	$500 \text{ mL} \cdot \text{min}^{-1}$	88% at 150 ℃	92% at 150 ℃	5,100 (200 °C)	94% to 51% after 8 h	[<mark>91</mark>]
8	Mn-Ce/AC	impregnation	500, 7	$500 \text{ mL} \cdot \text{min}^{-1}$	~ 89% at 150 ℃	~ 82% at 150 ℃	5,100 (250 °C)	~ 91% to ~ 51% after 8 h	[<mark>92</mark>]
9	Mn-Ce/g-C ₃ N ₄	precipitation	1000, 3	$600 \text{ mL} \cdot \text{min}^{-1}$	98% at 125 ℃	99% at 125 ℃	5,100 (200 °C)	100% to 72% after 6 h	[<mark>93</mark>]
10	MnCe/GAC-CNTs	Impregnation	550, 5	$10000 \ h^{-1}$	100% at 150 ℃	100% at 150 ℃	5,50 (150 °C)	100% to 92% after 6 h	[<mark>94</mark>]
11	MnCeEuO _x	One-pot	500, 10	$300 \text{ mL} \cdot \text{min}^{-1}$	100% at 150 ℃	~ 79% at 150 ℃	10, 50 (230 ℃)	~ 95% to 74% after 13 h	[<mark>9</mark> 5]
12	MnCePrO _x	hydrothermal	600, 5	$108000 \ h^{-1}$	~ 92% at 200 °C	~ 97% at 200 ℃	5,100 (250 °C)	~ 95% to ~ 80% after ~ 24 h	[<mark>96</mark>]
13	$Cr_{0.006}Mn_{0.05}CeTiO_x$	One-pot	500, 5	500 mL \cdot min ⁻¹	~ 95% at 175 ℃	~ 100% at 175 ℃	5,100 (250 ℃)	~ 100% to ~ 85% after 24 h	[<mark>97</mark>]
14	Mn–Ce–Fe/at tapulgite	Impregnation + 3D-printed	500, 5	$100 \text{ mL} \cdot \text{min}^{-1}$	100% at 150 ℃	91% at 150 ℃	5,100 (150 °C)	100% to 60% after ~ 12 h	[<mark>98</mark>]
15	Mn ₂ CeMo _{0.2} /porous ceramics	Impregnation	500, 6	$150000 \ h^{-1}$	95% at 100 ℃		7,100 (160 ℃)	98% to 88% after ~ 6 h	[<mark>99</mark>]
16	MnCeWFe/cordierite	impregnation	1000, 5	500 mL \cdot min ⁻¹	90.4% at 150 ℃	~ 98% at 150 ℃	5,200 (150 °C)	90% to ~89% after ~1 h	[100]
17	S-Mn ₁₀ Fe ₁₀ Co ₁ Ce ₄ / Ti/Si	sol-gel + impregnation	400, 5	$100 \text{ mL} \cdot \text{min}^{-1}$	99% at 160 ℃		10, 50 (250 ℃)	99% to 93% after 6 h	[101]
18	Mn_2Sm_1/TiO_2	Impregnation	500, 5	$80000h^{-1}$	~ 90% at 150 ℃	~ 90% at 150 ℃	5,100 (200 °C)	~ 90% to ~ 51% after 12 h	[102]
19	Sm _{0.2} MnTiSnO _y	solvothermal	500, 5	$100 \text{ mL} \cdot \text{min}^{-1}$	~ 96% at 200 ℃	~ 95% at 200 ℃	5, 25 (250°C)	99% to 75% after 11 h	[103]
20	Mn _{0.25} Fe _{0.75}	Impregnation	500, 5	$30000 \ h^{-1}$	94% at 125 ℃	~ 100% at 125 ℃	10, 200 (150℃)	~ 100% to ~ 88% after 10 h	[104]

表1 Mn 基催化剂的 NO 转化率、N2 选择性和抗 H2O/SO2 性能

Table 1 NO conversion, N₂ selectivity, and H₂O/SO₂ tolerance of Mn-based catalysts

佳的氧化还原性,从而获得比单一 Mn 基催化剂更优的脱硝活性.

(2) MnO_x的较强氧化还原性能影响了 SCR 反应路径,使 NH₃ 直接氧化或 NO 非选择性还原形成 N₂O 致 N₂选择性低.元素掺杂提高 MnO_x的分散性以削弱氧化还原性能,可调控 SCR 反应的路径,实现对 N₂选择性的优化,但削弱 MnO_x 的氧化还原性能也意味着脱硝活性的下降,因此需调控活性和选择性之间的平衡,最佳方法是在调控催化还原反应路径的前提下,不影响脱硝活性.

(3)强化对 H₂O 和 SO₂ 的耐受性是 Mn 基催化 剂研究的重点和难点,也是限制其工业应用的关 键. 元素掺杂改性可提供牺牲位点以转移 SO₂ 毒 化来保护 MnO_x, 但理论上牺牲位点吸附 SO₂ 饱和 后仍将毒化 MnO_x; 元素掺杂还可调控催化剂对 SO₂ 的吸附和氧化能力, 从而抑制 MnSO₄、NH₄HSO₄ 和 (NH₄)₂SO₄ 的形成; 设计核壳结构、多孔结构、表 面疏水结构等保护结构, 阻隔 H₂O 和 SO₂ 与 MnO_x 的直接接触, 同样可缓解催化剂的失活.

基于本文的分析, MnO_x 良好的氧化还原性能 和表面酸性使其表现出优异的低温脱硝活性, 但 同样使其 N_2 选择性低, 且对 H_2O/SO_2 耐受性差, 限制了其工业应用. 元素掺杂改性是优化 N_2 选择 性和提高 H_2O/SO_2 耐受性的主要途径, 综合低温

图 12 预吸附 SO₄²⁻ 的 γ-MnO₂(100) 在有/无 H₂O 条件下对 O₂ 吸附活性能对比(紫色: Mn, 红色: O, 黄色: S, 白色: H; IS、TS 和 FS 分别代表初始、 中间和最终态)^[107]

Fig.12 Optimized configurations and energy profiles for the O₂ activation pathway with/without H₂O on the SO_4^{2-} -preadsorbed γ -MnO₂ (100) surface (purple, Mn; red, O; yellow, S; and white, H; IS, TS and FS means initial state, transition state and final state, respectively)^[107]

活性、N₂选择性和稳定性来看,掺杂组分应具备 良好的储-释氧能力以提供丰富的氧空位,具备较 高的稳定性以分散 MnO_x并提高对 H₂O 和 SO₂的 耐受性;结构设计可阻隔 H₂O 和 SO₂的毒化,特别 是表面疏水改性等可削弱 H₂O 对催化剂表面 SO₂ 的毒化.此外,成形并构件化是脱硝催化剂工程应 用的前提,催化剂成形工艺已相当成熟,但对 Mn 基催化剂成形仍应加强研究,避免成形过程降低 催化剂的活性.总之,强化低温条件下的抗 H₂O/ SO₂性能应作为当前研究重点,才能尽快实现 Mn 基脱硝催化剂的工业应用.

参考文献

- [1] Ministry of Ecological Environment of the People's Republic of China. China Ecological Environment Statistics Annual Report 2022 [J/OL]. (2023–12–29) [2024–04–15]. https://www.mee. gov.cn/hjzl/sthjzk/sthjtjnb/202312/t20231229_1060181.shtml (中华人民共和国生态环境部. 2022 年中国生态环境统计年 报 [J/OL]. (2023–12–29) [2024–04–15]. https://www.mee.gov. cn/hjzl/sthjzk/sthjtjnb/202312/t20231229_1060181.shtml)
- [2] Zhu F H, Zhang J Y, Xu Z. Current situation and predicament of China's industrial flue gas treatment and relevant suggestions. *China Environ Prot Ind*, 2020(10): 13 (朱法华, 张静怡, 徐振. 我国工业烟气治理现状、困境及建议. 中国环保产业, 2020(10): 13)
- [3] Zhang B L, Zhang S Y, Zhang S G. The use of rare earths in catalysts for selective catalytic reduction of NO_x. *Prog Chem*, 2022, 34(2): 301
 (张柏林,张生杨,张深根.稀土元素在脱硝催化剂中的应用. 化学进展, 2022, 34(2): 301)
- [4] Xu S Y, Li D, Li J L, et al. Structure analysis and typical applications of manganese oxides in energy and environment. J Mater Eng, 2022, 50(8): 82

(徐思瑜,李德,李佳璐,等. 锰氧化物的结构分析及其在能源 与环境中的典型应用. 材料工程, 2022, 50(8):82)

- [5] Zhang S Y, Zhang B L, Wu B Y, et al. Effect of samarium on the N₂ selectivity of $Sm_xMn_{0,3-x}Ti$ catalysts during selective catalytic reduction of NO_x with NH₃. *Int J Miner Metall Mater*, 2023, 30(4): 642
- [6] Zhang B L, Liebau M, Liu B, et al. Selective catalytic reduction of NO_x with NH₃ over Mn–Zr–Ti mixed oxide catalysts. *J Mater Sci*, 2019, 54(9): 6943
- [7] Han L P, Cai S X, Gao M, et al. Selective catalytic reduction of NO_x with NH₃ by using novel catalysts: State of the art and future prospects. *Chem Rev*, 2019, 119(19): 10916
- [8] Zhang Y F, Xia F T, He Y G, et al. Catalytic reduction of NO_x by Mn/ZIF-67 composite catalyst at low temperature. *Mod Chem Ind*, 2023, 43(8): 162
 (张艳芳, 夏福婷, 何云刚, 等. Mn/ZIF-67 复合催化剂低温协同 催化还原 NO_x 的研究. 现代化工, 2023, 43(8): 162)
- [9] Wei L G, Guo R T, Zhou J, et al. Chemical deactivation and resistance of Mn-based SCR catalysts for NO_x removal from stationary sources. *Fuel*, 2022, 316: 123438
- [10] Xu G Y, Guo X L, Cheng X X, et al. A review of Mn-based catalysts for low-temperature NH₃-SCR: NO_x removal and H₂O/SO₂ resistance. *Nanoscale*, 2021, 13(15): 7052
- [11] Xiong S C, Zhong R L, Zhou S Y, et al. Research progress on denitrification catalysts for selective catalytic reduction of ammonia from stationary sources. *China Environ Sci*, 2023, 43(5): 2161

(熊尚超,钟若兰,周诗雨,等.固定源氨选择性催化还原脱硝 催化剂研究进展.中国环境科学,2023,43(5):2161)

- [12] Zhang S B, Li H X, Zhang A C, et al. Selective catalytic reduction of NO_x by low-temperature NH₃ over Mn_xZr₁ mixedoxide catalysts. *RSC Adv*, 2022, 12(3): 1341
- [13] Zhang S G, Zhang B L, Liu B, et al. A review of Mn-containing oxide catalysts for low temperature selective catalytic reduction

of NOx with NH3: Rreaction mechanism and catalyst deactivation. RSC Adv, 2017, 7(42): 26226

- [14] Kapteijn F, Singoredjo L, Andreini A, et al. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia. Appl Catal B, 1994, 3(2-3): 173
- [15] Chen Z C, Ren S, Wang M M, et al. Structure-activity strategy comparison of (NH₄) 2CO₃ and NH₄OH precipitants on MnO_x catalyst for low-temperature NO abatement. Mol Catal, 2022, 531: 112693
- [16] Gu S C, Gui K T, Ren D D, et al. The effects of manganese precursors on NO catalytic removal with MnOx/SiO2 catalyst at low temperature. React Kinet Mech Catal, 2020, 130(1): 195
- Wang B, Wang Z P, Yang Z, et al. Highly active MnO_x supported [17] on the MgAlO_x oxides derived from LDHs for low temperature NH₃-SCR. Fuel, 2022, 329: 125519
- [18] Dong Y Y, Jin B F, Liu S M, et al. Abundant oxygen vacancies induced by the mechanochemical process boost the lowtemperature catalytic performance of MnO2 in NH3-SCR. Catalysts, 2022, 12(10): 1291
- [19] Liang Y J, Gao C, Zhang Z R, et al. Modulation of paired acid centers for the α -, β -, γ - and δ -MnO₂ for the NH₃-SCR: A comparative density functional theory (DFT) study. Mol Catal, 2023, 546: 113252
- [20] Du B, Hu Y T, Cheng T, et al. Low-temperature selective catalytic reduction of NO with NH3 over an FeOx/β-MnO2 composite. RSC Adv, 2023, 13(10): 6378
- [21] Song J J, Liu S M, Ji Y J, et al. Dual single-atom Ce-Ti/MnO₂ catalyst enhances low-temperature NH3-SCR performance with high H₂O and SO₂ resistance. Nano Res, 2023, 16(1): 299
- [22] Zhou H M, Qian L L, Cheng T, et al. Effect of MnO_x/α-Fe₂O₃ prepared from goethite on selective catalytic reduction of NO with NH3. J Chem, 2022, 2022: 5049161
- [23] Zhang B L, Zhang S G, Liu B. Effect of oxygen vacancies on ceria catalyst for selective catalytic reduction of NO with NH₃. Appl Surf Sci, 2020, 529: 147068
- [24] Lin F, Wang Q L, Zhang J C, et al. Mechanism and kinetics study on low-temperature NH3-SCR over manganese-cerium composite oxide catalysts. Ind Eng Chem Res, 2019, 58(51): 22763
- Li M F, Gao M, He G Z, et al. Mechanistic insight into the [25] promotion of the low-temperature NH3-selective catalytic reduction activity over $Mn_xCe_{1-x}O_y$ catalysts: A combined experimental and density functional theory study. Environ Sci Technol, 2023, 57(9): 3875
- [26] Serrano-Lotina A, Cruz K, Bañares M A, et al. Bimetallic MnO2supported catalysts for selective reduction of NO with NH₃. Operando IR studies. Appl Surf Sci, 2023, 610: 155550
- [27] Zhang P, Yu W H, Gao B, et al. Denitration performance and mechanism of Mn-Ce supported alkali-modified fly ash catalysts for NH₃-SCR. Fuel, 2024, 357: 129878

- [28] Kong M, Zhang H D, Wang Y C, et al. Efficient MnO_x-CeO₂/Tibearing blast furnace slag catalyst for NH3-SCR of NO at low temperature: Study of support treating and Mn/Ce ratio. J Environ Chem Eng, 2022, 10(5): 108238
- [29] Kong M, Zhang H D, Wang Y C, et al. Deactivation mechanisms of MnO_x-CeO₂/Ti-bearing blast furnace slag low-temperature SCR catalyst by PbO and PbCl₂. Mol Catal, 2022, 521: 112209
- [30] Li X L, Niu Y F, Li J, et al. Trace Co doping improves NH3-SCR performance and poisoning resistance of Ce-Mn-based catalysts. *Chem Eng J*, 2023, 454: 140180
- Zhao S Q, Song K L, Jiang R Y, et al. Sm-modified Mn-Ce [31] oxides supported on cordierite as monolithic catalyst for the lowtemperature reduction of nitrogen oxides. Catal Today, 2023, 423: 113966
- [32] Nie W, Yan X, Yu F N, et al. Study on the effect of Ce-Cu doping on Mn/y-Al2O3 catalyst for selective catalytic reduction in NO with NH₃. Environ Geochem Health, 2023, 45(7): 5357
- [33] Wang J X, Yi X F, Ng D, et al. Synthesis and characterization of Mn-Ce-VOx/TiO2 nanocomposite for SCR of NOx at low temperatures: Role of Mn, Ce and V oxide. Top Catal, 2020, 63(9-10): 913
- [34] Zhao F, Zhang G D, Tang Z C, et al. Construction of fluffy MnFe nanoparticles and their synergistic catalysis for selective catalytic reduction reaction at low temperature. Fuel, 2022, 322: 124185
- [35] Chen Z C, Ren S, Xing X D, et al. Unveiling the inductive strategy of different precipitants on MnFeO_x catalyst for lowtemperature NH₃-SCR reaction. Fuel, 2023, 335: 126986
- [36] Zhou T X, Liu L, Wang B D, et al. Insights into the enhanced activity and SO₂ resistance of air oxidation treated Mn-Fe doped biochar catalyst in the low-temperature catalytic reduction of NO_r with NH3. Fuel, 2024, 357: 129989
- Kim D H, Park Y J, Jung M G, et al. Tailoring the catalytic [37] properties of Mn-V metal oxide composites for NOx abatement with NH₃ under NO- or NO₂- rich conditions. Appl Surf Sci, 2023, 628: 157332
- [38] Xu J Q, Zheng T, Zou X L, et al. The facilitating effect of sulfide treatment coupled sol-gel method on NH3-SCR activity of Fe-Mn/TiO2 catalysts. J Energy Inst, 2024, 112: 101458
- [39] Ren Z X, Zhang H L, Huang J, et al. Investigation of RuO_x doping stimulated the high catalytic activity of CeOx-MnOx/TiO2 catalysts in the NH3-SCR reaction: Structure-activity relationship and reaction mechanism. J Alloys Compd, 2022, 910: 164814
- [40] Zeng Y Q, Lyu F Y, Wang Y N, et al. New insight on N2O formation over MnOx/TiO2 catalysts for selective catalytic reduction of NO_x with NH₃. Mol Catal, 2022, 525: 112356
- [41] Liu H, Yan Z, Mu H F, et al. Promotional role of the TiO_x nanorod arrays as a support to load MnOx for low-temperature NH₃-selective catalytic reduction of NO_x: comparison of two preparation strategies. Energy Fuels, 2022, 36(2): 965
- - [42] Kim H S, Lee H, Kim H, et al. Enhanced NH₃-SCR activity at

· 154 ·

low temperatures over MnO_x supported on two-dimensional TiO₂ derived from ZIF-8. *J Environ Chem Eng*, 2023, 11(3): 110107

- [43] Zhang X L, Jin S, Liu S W, et al. Low-temperature NH₃-SCR over hierarchical MnO_x supported on montmorillonite prepared by different methods. *ACS Omega*, 2023, 8(14): 13384
- [44] Li L, Tang X L, Li Z, et al. Self-assembled biomineralized MnO_x for low temperature selective catalytic reduction of NO_x. *Colloids Surf A*, 2022, 642: 128667
- [45] Yang S J, Xiong S C, Liao Y, et al. Mechanism of N₂O formation during the low-temperature selective catalytic reduction of NO with NH₃ over Mn–Fe spinel. *Environ Sci Technol*, 2014, 48(17): 10354
- [46] Jiang B Q, Deng B Y, Zhang Z Q, et al. Effect of Zr addition on the low-temperature SCR activity and SO₂ tolerance of Fe–Mn/Ti catalysts. *J Phys Chem C*, 2014, 118(27): 14866
- [47] Yang S J, Guo Y F, Yan N Q, et al. Remarkable effect of the incorporation of titanium on the catalytic activity and SO₂ poisoning resistance of magnetic Mn–Fe spinel for elemental mercury capture. *Appl Catal B*, 2011, 101(3-4): 698
- [48] Zhang B L, Zhang S G, Liu B, et al. High N₂ selectivity in selective catalytic reduction of NO with NH₃ over Mn/Ti–Zr catalysts. *RSC Adv*, 2018, 8(23): 12733
- [49] Che Y, Liu X Y, Shen Z, et al. Improved N₂ selectivity of MnO_x catalysts for NO_x reduction by engineering bridged Mn^{3+} sites. *Langmuir*, 2023, 39(21): 7434
- [50] Gevers L E, Enakonda L R, Shahid A, et al. Unraveling the structure and role of Mn and Ce for NO_x reduction in applicationrelevant catalysts. *Nat Commun*, 2022, 13(1): 2960
- [51] Liu F Y, Li J Q, Sohn H Y, et al. Redox on Mn–Ce interface and its effects on low temperature selective catalytic reduction for NO_x removal. *Fuel*, 2023, 350: 128806
- [52] Zhao S Q, Shi J W, Niu C H, et al. FeVO₄-supported Mn–Ce oxides for the low-temperature selective catalytic reduction of NO_x by NH₃. *Catal Sci Technol*, 2021, 11(20): 6770
- [53] Liu X, Xie H D, Mu G, et al. Preparation of high catalytic active Mn–La_{0.5}/TiO₂ denitration catalyst by *in situ* deposition method. *Catal Lett*, 2024, 154(3): 899
- [54] He X, Zhu F J, Dong L L, et al. Sm-MnO_x/TiO₂-{001}with preferentially exposed anatase{001} facet for selective catalytic reduction of NO with NH₃. *Appl Catal A*, 2023, 664: 119353
- [55] Xu B, Wang Z, Hu J, et al. Dy-modified Mn/TiO₂ catalyst used for the selective catalytic reduction of NO in ammonia at low temperatures. *Molecules*, 2024, 29(1): 277
- [56] Niu C H, Wang B R, Xing Y, et al. Thulium modified MnO_x/TiO₂ catalyst for the low-temperature selective catalytic reduction of NO with ammonia. *J Cleaner Prod*, 2021, 290: 125858
- [57] Wu H L, Liu W Z, Liang Y, et al. Design strategy of the MnO_x catalyst for SCR of NO with NH₃: Mechanism of lead poisoning and improvement method. *Inorg Chem*, 2023, 62(42): 17341

- [58] Zhang B L, Liebau M, Suprun W, et al. Suppression of N₂O formation by H₂O and SO₂ in the selective catalytic reduction of NO with NH₃ over a Mn/Ti–Si catalyst. *Catal Sci Technol*, 2019, 9(17): 4759
- [59] Li H R, Schill L, Gao Q, et al. The effect of dopants (Fe, Al) on the low-temperature activity and SO₂ tolerance in solvothermally synthesized MnO_x NH₃-SCR catalysts. *Fuel*, 2024, 358: 130111
- [60] Fan Z Y, Cheng G, Liu J N, et al. Insight into the temperaturedependent SO₂ resistance over Mn-based de-NO_x catalyst. J *Environ Chem Eng*, 2023, 11(3): 110202
- [61] Song K L, Gao C, Lu P, et al. Bimetallic modification of $MnFeO_x$ nanobelts with Nb and Nd for enhanced low-temperature de-NO_x performance and SO₂ tolerance. *Fuel*, 2023, 331: 125861
- [62] Xu Q, Li Z Y, Wang L, et al. Understanding the role of redox properties and NO adsorption over MnFeO_x for NH₃-SCR. *Catal Sci Technol*, 2022, 12(6): 2030
- [63] Jin R B, Liu Y, Wang Y, et al. The role of cerium in the improved SO₂ tolerance for NO reduction with NH₃ over Mn–Ce/TiO₂ catalyst at low temperature. *Appl Catal B*, 2014, 148: 582
- [64] Ruiz-Martínez J, Gevers L E, Enakonda L R, et al. Effect of SO₂ poisoning on undoped and doped Mn-based catalysts for selective catalytic reduction of NO. *Catal Sci Technol*, 2022, 12(22): 6838
- [65] Wang Q L, Wang R, Huang X N, et al. Sulfur/water resistance and regeneration of MnO_x -CeO₂/TiO₂ catalyst for lowtemperature selective catalytic reduction of NO_x. *J Environ Chem Eng*, 2022, 10(2): 107345
- [66] Qin B, Guo R T, Zhou J, et al. A novel flower-like MnCe/TiO₂ catalyst with controlled morphology for low-temperature selective catalytic reduction of NO with NH₃. *Appl Surf Sci*, 2022, 598: 153823
- [67] Han Q, Jin S L, Wang J T, et al. Insights to sulfur-resistant mechanisms of reduced graphene oxide supported MnO_x-CeO_y catalysts for low-temperature NH₃-SCR. *J Phys Chem Solids*, 2022, 167: 110782
- [68] Qing M X, Zhang L L, Liu L, et al. Depth investigation of the regulation mechanism of SiO₂ on the denitrification performance and sulfur resistance of MnCe/Ti SCR catalyst. *Chem Eng J*, 2023, 475: 145852
- [69] Chen Z C, Ren S, Wang M M, et al. Insights into samarium doping effects on catalytic activity and SO₂ tolerance of MnFeO_x catalyst for low-temperature NH₃-SCR reaction. *Fuel*, 2022, 321: 124113
- [70] Li J F, Liu H, Qin Q J, et al. Functional distinction of different components in SmCeMn/Ti catalytic system for NH₃-SCR. *Appl Surf Sci*, 2023, 636: 157775
- [71] Huang L H, Hua J. Effect of different doping elements on performance of Ce–Mn/TiO₂ catalyst for low temperature denitration. *J Rare Earths*, 2023, 41(5): 689
- [72] Wang Y, Xie H D, Liu H, et al. La and Co addition to Mn/TiO₂

catalysts for enhancing low-temperature denitrification activity and H_2O/SO_2 Tolerance. *Ind Eng Chem Res*, 2023, 62(44) : 18303

- [73] Zhang Y P, Wu P, Li G B, et al. Improved activity of Homodified Mn/Ti catalysts for the selective catalytic reduction of NO with NH₃. *Environ Sci Pollut Res*, 2020, 27(21): 26954
- [74] Chen C, Wang Y X, Li J X, et al. In situ construction of heteroatom F-doped Mn₃O₄ spinel catalysts with robust activity and SO₂ resistance for NH₃-SCR at low temperature. *Appl Catal B*, 2023, 338: 123086
- [75] Xiong S C, Peng Y, Wang D, et al. The role of the Cu dopant on a Mn₃O₄ spinel SCR catalyst: Improvement of low-temperature activity and sulfur resistance. *Chem Eng J*, 2020, 387: 124090
- [76] Chen R Y, Fang X Y, Li J H, et al. Mechanistic investigation of the enhanced SO₂ resistance of Co-modified MnO_x catalyst for the selective catalytic reduction of NO_x by NH₃. *Chem Eng J*, 2023, 452: 139207
- [77] Wu H L, Liu W Z, Jiang X Y, et al. Unveiling the SO₂ resistance mechanism of a nanostructured SiO₂(x) @Mn catalyst for lowtemperature NH₃-SCR of NO. *Inorg Chem*, 2023, 62(25): 9971
- [78] Li H R, Schill L, Fehrmann R, et al. Selective catalytic reduction of nitric oxide with a novel Mn–Ti–Ce oxide core-shell catalyst having improved low-temperature activity and water tolerance. J Energy Inst, 2023, 109: 101266
- [79] Jiang Z P, Wang Q L, Cai Y Z. Enhanced catalytic activity and SO_2/H_2O tolerance for selective catalytic reduction of NO_x with NH_3 over titanate nanotubes supported MnO_x -CeO₂ catalyst at low temperature. *Catal Surv Asia*, 2022, 26(3): 161
- [80] Li J C, Zhang C, Li Q, et al. Promoting mechanism of SO₂ resistance performance by anatase TiO₂{001} facets on Mn–Ce/TiO₂ catalysts during NH₃-SCR reaction. *Chem Eng Sci*, 2022, 251: 117438
- [81] Li K, Zhou T, Xu X Q, et al. PTFE-modified Mn-Co-based catalytic ceramic filters with H₂O resistance for low-temperature NH₃-SCR. *Sustainability*, 2022, 14(9): 5353
- [82] Zhang N Q, Li L C, Zhang B B, et al. Polytetrafluoroethylene modifying: A low cost and easy way to improve the H₂O resistance ability over MnO_x for low-temperature NH₃-SCR. J Environ Chem Eng, 2019, 7(3): 103044
- [83] Li T Y, Li W J, Wey M Y. Strategies for designing hydrophobic MnCe-montmorillonite catalysts against water vapor for lowtemperature NH₃-SCR. *Fuel*, 2023, 350: 128857
- [84] Zhu Y J, Xiao X X, Wang J T, et al. Enhanced activity and water resistance of hierarchical flower-like Mn–Co binary oxides for ammonia-SCR reaction at low temperature. *Appl Surf Sci*, 2021, 569: 150989
- [85] Chen R Y, Fang X Y, Li Z G, et al. Selective catalytic reduction of NO_x with NH₃ over a novel MOF-derived MnO_x catalyst. *Appl Catal A*, 2022, 643: 118754
- [86] Wang S H, Li X D, Ren S, et al. Effects of different exposed

crystal surfaces of CeO₂ loaded on an MnO₂/X catalyst for the NH₃-SCR reaction. *CrystEngComm*, 2022, 24(27): 4991

- [87] Xu J C, Zhang X Y, Sun Y L, et al. Improvement of lowtemperature NH₃-SCR catalytic activity over Mn–Ce oxide catalysts supported on sewage sludge char activated with KOH and H₃PO₄. *Korean J Chem Eng*, 2020, 37(12): 2152
- [88] Hou X X, Chen H P, Liang Y H, et al. La modified Fe-Mn/TiO₂ catalysts to improve SO₂ resistance for NH₃-SCR at lowtemperature. *Catal Surv Asia*, 2020, 24(4): 291
- [89] Yang Z, Wang Z P, Liu W, et al. Highly efficient MnO_x catalysts supported on Mg–Al spinel for low temperature NH₃-SCR. J Environ Chem Eng, 2023, 11(5): 110873
- [90] Wu H L, Liu W Z, Cao J, et al. Mechanistic and performance insights into low-temperature NH₃-SCR based on Ce-modified Mn–Ti catalysts. *J Environ Chem Eng*, 2023, 11(3): 110072
- [91] Wang M M, Ren S, Jiang Y H, et al. Insights into co-doping effect of Sm and Fe on anti-Pb poisoning of Mn–Ce/AC catalyst for low-temperature SCR of NO with NH₃. *Fuel*, 2022, 319: 123763
- [92] Wang M M, Guo R T, Ren S, et al. Revealing M (M = Cu, Co and Zr) oxides doping effects on anti-PbCl₂ poisoning over Mn–Ce/AC catalysts in low-temperature NH₃-SCR reaction. *Appl Catal A*, 2022, 643: 118749
- [93] Yang Z Z, Tang P F, Xu C H, et al. Graphitic carbon nitride (g-C₃N₄) as a super support for Mn–Ce based NH₃-SCR catalyst: Improvement of catalytic performance and H₂O/SO₂ tolerance for NO_x removal. *J Energy Inst*, 2023, 108: 101201
- [94] Xu Y C, Wang P C, Pu Y J, et al. MnCe/GAC-CNTs catalyst with high activity, SO₂ and H₂O tolerance for low-temperature NH₃-SCR. *Sep Purif Technol*, 2023, 305: 122498
- [95] Wang Q J, Wang Y H, Wei L H, et al. Promotional mechanism of activity of CeEuMnO_x ternary oxide for low temperature SCR of NO_x. J Rare Earths, 2023, 41(6): 965
- [96] Wu T, Ren S, Guo R T, et al. The promotion effect of Pr doping on the catalytic performance of MnCeO_x catalysts for lowtemperature NH₃-SCR. *Fuel*, 2024, 357: 129917
- [97] Liu W Y, Gao Z H, Sun M, et al. One-pot synthesis of $Cr_{\alpha}Mn_{\beta}CeTiO_x$ mixed oxides as NH₃-SCR catalysts with enhanced low-temperature catalytic activity and sulfur resistance. *Chem Eng Sci*, 2022, 251: 117450
- [98] Li Y Q, Jiang P, Tian J Q, et al. 3D-printed monolithic catalyst of Mn–Ce–Fe/attapulgite for selective catalytic reduction of nitric oxide with ammonia at low temperature. *J Environ Chem Eng*, 2021, 9(4): 105753
- [99] Zhou T, Jin J, Zhang H. Mn–Ce catalysts/LDPC modified by Mo for improving NH₃-SCR performance and SO₂ resistance at low temperature. *Metals*, 2023, 13(5): 938
- [100] Ding S Y, Li C Y, Zhang J, et al. Doping regulation increased SCR activity, selectivity, and hydrothermal stability of Mn-based cordierite catalyst. *Appl Surf Sci*, 2022, 595: 153484

- [101] Qiu L, Li D K, Li H L, et al. Improvement of sulfur and water resistance with Fe-modified S–MnCoCe/Ti/Si catalyst for lowtemperature selective catalytic reduction of NO with NH₃. *Chemosphere*, 2022, 302: 134740
- [102] Liu L J, Xu K, Su S, et al. Efficient Sm modified Mn/TiO₂ catalysts for selective catalytic reduction of NO with NH₃ at low temperature. *Appl Catal A*, 2020, 592: 117413
- [103] Qin Q J, Chen K A, Xie S Z, et al. Enhanced SO₂ and H₂O resistance of MnTiSnO_y composite oxide for NH₃-SCR through Sm modification. *Appl Surf Sci*, 2022, 583: 152478
- [104] Zhu H J, Wang R. Phosphotungstic acid-promoted Mn–Fe bimetal oxide with high sulfur resistance for low-temperature

selective catalytic reduction of nitrogen oxides with NH₃. *J Alloys Compd*, 2023, 936: 168272

- [105] Chen J Y, Fu P, Lv D F, et al. Unusual positive effect of SO₂ on Mn–Ce mixed-oxide catalyst for the SCR reaction of NO_x with NH₃. *Chem Eng J*, 2021, 407: 127071
- [106] Ji J W, Gao N Z, Song W, et al. Understanding the temperaturedependent H₂O promotion effect on SO₂ resistance of MnO_x-CeO₂ catalyst for SCR denitration. *Appl Catal B*, 2023, 324: 122263
- [107] An D Q, Ji J W, Cheng Q N, et al. Facile H₂O-contributed O₂ activation strategy over Mn-based SCR catalysts to counteract SO₂ poisoning. *Environ Sci Technol*, 2023, 57(39): 14737