孟凡娟, 王清, 李慧心, 向婉倩, 姚海元, 王赟, 李清平, 王贝, 路民旭, 张雷. 3Cr钢在油水两相层流工况下的腐蚀行为[J]. 工程科学学报, 2020, 42(8): 1029-1039. DOI: 10.13374/j.issn2095-9389.2019.07.27.003
引用本文: 孟凡娟, 王清, 李慧心, 向婉倩, 姚海元, 王赟, 李清平, 王贝, 路民旭, 张雷. 3Cr钢在油水两相层流工况下的腐蚀行为[J]. 工程科学学报, 2020, 42(8): 1029-1039. DOI: 10.13374/j.issn2095-9389.2019.07.27.003
MENG Fan-juan, WANG Qing, LI Hui-xin, XIANG Wan-qian, YAO Hai-yuan, WANG Yun, LI Qing-ping, WANG Bei, LU Min-xu, ZHANG Lei. Corrosion behavior for 3Cr steel under oil-water two-phase laminar flow conditions[J]. Chinese Journal of Engineering, 2020, 42(8): 1029-1039. DOI: 10.13374/j.issn2095-9389.2019.07.27.003
Citation: MENG Fan-juan, WANG Qing, LI Hui-xin, XIANG Wan-qian, YAO Hai-yuan, WANG Yun, LI Qing-ping, WANG Bei, LU Min-xu, ZHANG Lei. Corrosion behavior for 3Cr steel under oil-water two-phase laminar flow conditions[J]. Chinese Journal of Engineering, 2020, 42(8): 1029-1039. DOI: 10.13374/j.issn2095-9389.2019.07.27.003

3Cr钢在油水两相层流工况下的腐蚀行为

Corrosion behavior for 3Cr steel under oil-water two-phase laminar flow conditions

  • 摘要: 油水两相是海底管道和集输管线常见的腐蚀工况之一。以3Cr钢为代表的低Cr合金钢是目前具有良好耐蚀性能的重要材料,但是,在油水两相层流工况下,特别是加注了一定缓蚀剂的条件下,3Cr钢的适用性尚不明确。通过高温高压反应釜模拟了油水两相层流工况的腐蚀环境,结合扫描电子显微镜(SEM)、X射线衍射谱(XRD)、激光共聚焦拉曼光谱、电化学交流阻抗等测试表征方法,研究了3Cr钢的腐蚀行为及缓蚀剂对其耐蚀性能的影响。结果表明,在油水分层工况下,3Cr钢的腐蚀产物膜为明显的双层膜结构,其内层腐蚀产物膜为结构致密的富Cr层,表现出良好的抗CO2腐蚀性能,但加入100 mg·L−1十七烯基胺乙基咪唑啉季铵盐缓蚀剂后,3Cr钢并未得到有效的缓蚀保护。腐蚀产物分析和电化学研究表明,烷烃分子、缓蚀剂分子及富Cr层间存在竞争关系,烷烃分子干扰了缓蚀剂分子的有序排列,影响了3Cr钢的耐蚀性。

     

    Abstract: With the growing of CO2 corrosion problem in multiphase oil and gas in-field pipelines, carbon steel can no longer meet the continuously growing demand for energy consumption. At the same time, the water content in the gathering pipelines and the complex phase distribution of the oil and water phases make the service environment of the pipeline steel increasingly demanding. Recently, the low Cr-containing steel, which shows an excellent performance-price ratio with a better CO2 corrosion resistance, is expected to replace the carbon steel used for pipelines. However, the application of 3Cr is limited under the conditions of oil-water flows, especially those with corrosion inhibitor. For example, the absolute value of the uniform corrosion rate is still relatively high in environments of high-carbon dioxide, and using corrosion inhibitor in the application of Cr-containing low-alloy steels is still necessary. Some researchers found that the corrosion inhibitor of imidazoline quaternary ammonium salt can better control the corrosion caused by carbon dioxide in the application of 3Cr steel. Since the corrosion resistance of Cr-containing low-alloy steel depends on the formation of corrosion products, it is highly susceptible to corrosion inhibitors, and research on its compatibility with corrosion inhibitors is still lacking. In this study, the corrosion resistance of 3Cr steel and the effect of corrosion inhibitor on the resistance were evaluated in an oil-water two-phase environment by using a high-temperature and high-pressure autoclave combined with SEM (scanning electron microscope), XRD (X-ray diffraction), confocal Raman spectroscopy, and electrochemical impedance spectroscopy. The results show that the corrosion scales formed on the 3Cr steel consist of two layers, and the inner layer is a Cr-rich layer in this environments, exhibiting good resistance to CO2 corrosion under the conditions of oil-water flows. However, after adding 100 mg·L−1 corrosion inhibitor of seventeen alkenyl amide ethyl imidazoline quaternary ammonium salt, 3Cr steel has not been effectively protected from corrosion. The analysis of the corrosion product and electrochemical tests revealed that competition exited between alkane molecules, corrosion inhibitor molecules and Cr-rich layers and the alkanes interfered with the ordered arrangement of the corrosion inhibitor and thus affected the corrosion resistance of 3Cr steel.

     

/

返回文章
返回